Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901899013> ?p ?o ?g. }
- W2901899013 endingPage "753" @default.
- W2901899013 startingPage "746" @default.
- W2901899013 abstract "Indoor and outdoor fine particulate matter (PM2.5) are both leading risk factors for death and disease, but making indoor measurements is often infeasible for large study populations. We developed models to predict indoor PM2.5 concentrations for pregnant women who were part of a randomized controlled trial of portable air cleaners in Ulaanbaatar, Mongolia. We used multiple linear regression (MLR) and random forest regression (RFR) to model indoor PM2.5 concentrations with 447 independent 7-day PM2.5 measurements and 87 potential predictor variables obtained from outdoor monitoring data, questionnaires, home assessments, and geographic data sets. We also developed blended models that combined the MLR and RFR approaches. All models were evaluated in a 10-fold cross-validation. The predictors in the MLR model were season, outdoor PM2.5 concentration, the number of air cleaners deployed, and the density of gers (traditional felt-lined yurts) surrounding the apartments. MLR and RFR had similar performance in cross-validation (R2 = 50.2%, R2 = 48.9% respectively). The blended MLR model that included RFR predictions had the best performance (cross validation R2 = 81.5%). Intervention status alone explained only 6.0% of the variation in indoor PM2.5 concentrations. We predicted a moderate amount of variation in indoor PM2.5 concentrations using easily obtained predictor variables and the models explained substantially more variation than intervention status alone. While RFR shows promise for modelling indoor concentrations, our results highlight the importance of out-of-sample validation when evaluating model performance. We also demonstrate the improved performance of blended MLR/RFR models in predicting indoor air pollution." @default.
- W2901899013 created "2018-11-29" @default.
- W2901899013 creator A5004735699 @default.
- W2901899013 creator A5013970432 @default.
- W2901899013 creator A5020046533 @default.
- W2901899013 creator A5022871139 @default.
- W2901899013 creator A5024761278 @default.
- W2901899013 creator A5038407278 @default.
- W2901899013 creator A5039444427 @default.
- W2901899013 creator A5041376144 @default.
- W2901899013 creator A5043405314 @default.
- W2901899013 creator A5060563039 @default.
- W2901899013 creator A5065566841 @default.
- W2901899013 creator A5066069622 @default.
- W2901899013 creator A5075612185 @default.
- W2901899013 creator A5076671726 @default.
- W2901899013 creator A5077491541 @default.
- W2901899013 creator A5077835905 @default.
- W2901899013 creator A5078390498 @default.
- W2901899013 creator A5079811085 @default.
- W2901899013 creator A5080164344 @default.
- W2901899013 date "2019-02-01" @default.
- W2901899013 modified "2023-10-03" @default.
- W2901899013 title "Evaluation of random forest regression and multiple linear regression for predicting indoor fine particulate matter concentrations in a highly polluted city" @default.
- W2901899013 cites W1965702583 @default.
- W2901899013 cites W1967185012 @default.
- W2901899013 cites W1969439569 @default.
- W2901899013 cites W1975981169 @default.
- W2901899013 cites W1982326790 @default.
- W2901899013 cites W1991754749 @default.
- W2901899013 cites W2021406705 @default.
- W2901899013 cites W2023787514 @default.
- W2901899013 cites W2024526649 @default.
- W2901899013 cites W2025517891 @default.
- W2901899013 cites W2027628120 @default.
- W2901899013 cites W2046086616 @default.
- W2901899013 cites W2063757041 @default.
- W2901899013 cites W2075080743 @default.
- W2901899013 cites W2083508354 @default.
- W2901899013 cites W2084554826 @default.
- W2901899013 cites W2084799197 @default.
- W2901899013 cites W2096493186 @default.
- W2901899013 cites W2102031662 @default.
- W2901899013 cites W2135675815 @default.
- W2901899013 cites W2138554618 @default.
- W2901899013 cites W2139086914 @default.
- W2901899013 cites W2143592847 @default.
- W2901899013 cites W2145862305 @default.
- W2901899013 cites W2153641546 @default.
- W2901899013 cites W2161548576 @default.
- W2901899013 cites W2407668639 @default.
- W2901899013 cites W2416782259 @default.
- W2901899013 cites W2487149011 @default.
- W2901899013 cites W2494579791 @default.
- W2901899013 cites W2521370717 @default.
- W2901899013 cites W2537492494 @default.
- W2901899013 cites W2586941147 @default.
- W2901899013 cites W2620300958 @default.
- W2901899013 cites W2765889142 @default.
- W2901899013 cites W2766313249 @default.
- W2901899013 cites W2911964244 @default.
- W2901899013 doi "https://doi.org/10.1016/j.envpol.2018.11.034" @default.
- W2901899013 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30500754" @default.
- W2901899013 hasPublicationYear "2019" @default.
- W2901899013 type Work @default.
- W2901899013 sameAs 2901899013 @default.
- W2901899013 citedByCount "95" @default.
- W2901899013 countsByYear W29018990132019 @default.
- W2901899013 countsByYear W29018990132020 @default.
- W2901899013 countsByYear W29018990132021 @default.
- W2901899013 countsByYear W29018990132022 @default.
- W2901899013 countsByYear W29018990132023 @default.
- W2901899013 crossrefType "journal-article" @default.
- W2901899013 hasAuthorship W2901899013A5004735699 @default.
- W2901899013 hasAuthorship W2901899013A5013970432 @default.
- W2901899013 hasAuthorship W2901899013A5020046533 @default.
- W2901899013 hasAuthorship W2901899013A5022871139 @default.
- W2901899013 hasAuthorship W2901899013A5024761278 @default.
- W2901899013 hasAuthorship W2901899013A5038407278 @default.
- W2901899013 hasAuthorship W2901899013A5039444427 @default.
- W2901899013 hasAuthorship W2901899013A5041376144 @default.
- W2901899013 hasAuthorship W2901899013A5043405314 @default.
- W2901899013 hasAuthorship W2901899013A5060563039 @default.
- W2901899013 hasAuthorship W2901899013A5065566841 @default.
- W2901899013 hasAuthorship W2901899013A5066069622 @default.
- W2901899013 hasAuthorship W2901899013A5075612185 @default.
- W2901899013 hasAuthorship W2901899013A5076671726 @default.
- W2901899013 hasAuthorship W2901899013A5077491541 @default.
- W2901899013 hasAuthorship W2901899013A5077835905 @default.
- W2901899013 hasAuthorship W2901899013A5078390498 @default.
- W2901899013 hasAuthorship W2901899013A5079811085 @default.
- W2901899013 hasAuthorship W2901899013A5080164344 @default.
- W2901899013 hasConcept C105795698 @default.
- W2901899013 hasConcept C119857082 @default.
- W2901899013 hasConcept C152877465 @default.
- W2901899013 hasConcept C169258074 @default.
- W2901899013 hasConcept C18903297 @default.
- W2901899013 hasConcept C24245907 @default.