Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901906265> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2901906265 endingPage "e2292" @default.
- W2901906265 startingPage "e2292" @default.
- W2901906265 abstract "As an important part of the steel structure, the bolt damage will affect the safety of the structure and even cause severe accidents. However, it is difficult to detect the bolt loosening from the perspective of the conventional dynamics, due to the complex vibration characteristics of the bolt joints. In order to detect structural damage intuitively, machine vision has been introduced into the field of structural health monitoring. Therefore, this paper combines deep learning and machine vision to propose a bolt loosening angle detection technology. First, the data sets with bolts were collected and divided into training sets, validation sets, and test sets. Second, the data sets were trained using Single Shot MultiBox Detector. And the recognition accuracy of the model was evaluated, which can reach 0.914. Thereafter, the images obtained from different angles and lighting conditions were detected by the training model; the results showed that this method still has high recognition accuracy and meets the requirements of engineering. Finally, the training model was migrated to the smartphone to achieve quick and simple bolt loosening monitoring." @default.
- W2901906265 created "2018-11-29" @default.
- W2901906265 creator A5018140955 @default.
- W2901906265 creator A5042833305 @default.
- W2901906265 creator A5059213662 @default.
- W2901906265 date "2018-11-20" @default.
- W2901906265 modified "2023-10-16" @default.
- W2901906265 title "Bolt loosening angle detection technology using deep learning" @default.
- W2901906265 cites W1536680647 @default.
- W2901906265 cites W1834627138 @default.
- W2901906265 cites W1968794683 @default.
- W2901906265 cites W2018560744 @default.
- W2901906265 cites W2020091852 @default.
- W2901906265 cites W2037516052 @default.
- W2901906265 cites W2057311804 @default.
- W2901906265 cites W2102605133 @default.
- W2901906265 cites W2119112357 @default.
- W2901906265 cites W2143761217 @default.
- W2901906265 cites W2153807170 @default.
- W2901906265 cites W2162976267 @default.
- W2901906265 cites W2183341477 @default.
- W2901906265 cites W2332885174 @default.
- W2901906265 cites W2471180274 @default.
- W2901906265 cites W2478677992 @default.
- W2901906265 cites W2559460510 @default.
- W2901906265 cites W2592929672 @default.
- W2901906265 cites W2753089952 @default.
- W2901906265 cites W2767547957 @default.
- W2901906265 cites W2780159143 @default.
- W2901906265 cites W2784025535 @default.
- W2901906265 cites W2793062918 @default.
- W2901906265 cites W2806286110 @default.
- W2901906265 cites W2963037989 @default.
- W2901906265 cites W3099206234 @default.
- W2901906265 cites W3106250896 @default.
- W2901906265 doi "https://doi.org/10.1002/stc.2292" @default.
- W2901906265 hasPublicationYear "2018" @default.
- W2901906265 type Work @default.
- W2901906265 sameAs 2901906265 @default.
- W2901906265 citedByCount "75" @default.
- W2901906265 countsByYear W29019062652019 @default.
- W2901906265 countsByYear W29019062652020 @default.
- W2901906265 countsByYear W29019062652021 @default.
- W2901906265 countsByYear W29019062652022 @default.
- W2901906265 countsByYear W29019062652023 @default.
- W2901906265 crossrefType "journal-article" @default.
- W2901906265 hasAuthorship W2901906265A5018140955 @default.
- W2901906265 hasAuthorship W2901906265A5042833305 @default.
- W2901906265 hasAuthorship W2901906265A5059213662 @default.
- W2901906265 hasBestOaLocation W29019062651 @default.
- W2901906265 hasConcept C108583219 @default.
- W2901906265 hasConcept C12713177 @default.
- W2901906265 hasConcept C127413603 @default.
- W2901906265 hasConcept C154945302 @default.
- W2901906265 hasConcept C202444582 @default.
- W2901906265 hasConcept C31972630 @default.
- W2901906265 hasConcept C33923547 @default.
- W2901906265 hasConcept C41008148 @default.
- W2901906265 hasConcept C66938386 @default.
- W2901906265 hasConcept C9652623 @default.
- W2901906265 hasConceptScore W2901906265C108583219 @default.
- W2901906265 hasConceptScore W2901906265C12713177 @default.
- W2901906265 hasConceptScore W2901906265C127413603 @default.
- W2901906265 hasConceptScore W2901906265C154945302 @default.
- W2901906265 hasConceptScore W2901906265C202444582 @default.
- W2901906265 hasConceptScore W2901906265C31972630 @default.
- W2901906265 hasConceptScore W2901906265C33923547 @default.
- W2901906265 hasConceptScore W2901906265C41008148 @default.
- W2901906265 hasConceptScore W2901906265C66938386 @default.
- W2901906265 hasConceptScore W2901906265C9652623 @default.
- W2901906265 hasFunder F4320321001 @default.
- W2901906265 hasFunder F4320335777 @default.
- W2901906265 hasIssue "1" @default.
- W2901906265 hasLocation W29019062651 @default.
- W2901906265 hasOpenAccess W2901906265 @default.
- W2901906265 hasPrimaryLocation W29019062651 @default.
- W2901906265 hasRelatedWork W1670566515 @default.
- W2901906265 hasRelatedWork W1975467175 @default.
- W2901906265 hasRelatedWork W2018871932 @default.
- W2901906265 hasRelatedWork W2149537132 @default.
- W2901906265 hasRelatedWork W370975646 @default.
- W2901906265 hasRelatedWork W4242022592 @default.
- W2901906265 hasRelatedWork W4375867731 @default.
- W2901906265 hasRelatedWork W596972243 @default.
- W2901906265 hasRelatedWork W641279757 @default.
- W2901906265 hasRelatedWork W69751022 @default.
- W2901906265 hasVolume "26" @default.
- W2901906265 isParatext "false" @default.
- W2901906265 isRetracted "false" @default.
- W2901906265 magId "2901906265" @default.
- W2901906265 workType "article" @default.