Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901914797> ?p ?o ?g. }
- W2901914797 endingPage "3226" @default.
- W2901914797 startingPage "3204" @default.
- W2901914797 abstract "The aim of this study was to develop a robust methodology to estimate pasture biomass across the huge land surface of Mongolia (1.56 × 106 km2) using high-resolution Landsat 8 satellite data calibrated against field-measured biomass samples. Two widely used regression models were compared and adopted for this study: Partial Least Squares (PLS) and Random Forest (RF). Both methods were trained to predict pasture biomass using a total of 17 spectral indices derived from Landsat 8 multi-temporal satellite imagery as predictor variables. For training, reference biomass data from a field survey of 553 sites were available. PLS results showed a satisfactory correlation between field measured and estimated biomass with coefficient of determination (R2) = 0.750 and Root Mean Square Error (RMSE) = 101.10 kg ha−1. The RF regression gave similar results with R2 = 0.764, RMSE = 98.00 kg ha−1. An examination of feature importance found the following vegetation indices to be the most relevant: Green Chlorophyll Index (CLgreen), Simple Ratio (SR), Wide Dynamic Range Vegetation Index (WDRVI), Enhanced Vegetation Index EVI1 and Normalized Difference Vegetation Index (NDVI) indices. With respect to the spectral reflectances, Red and Short Wavelength Infra-Red2 (SWIR2) bands showed the strongest correlation with biomass. Using the developed PLS models, a spatial map of pasture biomass covering Mongolia at a spatial resolution of 30 m was generated. Our study confirms the high potential of RF and PLS regression (PLSR) models to predict pasture biomass. The computationally simpler PLSR model is preferred for applications involving large regions. This method can be implemented easily, provided that sufficient reference data and cloud-free observations are available." @default.
- W2901914797 created "2018-11-29" @default.
- W2901914797 creator A5013081978 @default.
- W2901914797 creator A5014728233 @default.
- W2901914797 creator A5044281635 @default.
- W2901914797 creator A5069120203 @default.
- W2901914797 date "2018-11-13" @default.
- W2901914797 modified "2023-10-16" @default.
- W2901914797 title "Mapping pasture biomass in Mongolia using Partial Least Squares, Random Forest regression and Landsat 8 imagery" @default.
- W2901914797 cites W1527561456 @default.
- W2901914797 cites W1582302930 @default.
- W2901914797 cites W196321102 @default.
- W2901914797 cites W1965042690 @default.
- W2901914797 cites W1978005854 @default.
- W2901914797 cites W1978617972 @default.
- W2901914797 cites W1986449905 @default.
- W2901914797 cites W1989074151 @default.
- W2901914797 cites W1993027380 @default.
- W2901914797 cites W1995077345 @default.
- W2901914797 cites W2000102737 @default.
- W2901914797 cites W2000613913 @default.
- W2901914797 cites W2005358860 @default.
- W2901914797 cites W2014228598 @default.
- W2901914797 cites W2018627383 @default.
- W2901914797 cites W2019126302 @default.
- W2901914797 cites W2019752143 @default.
- W2901914797 cites W2030078894 @default.
- W2901914797 cites W2031993742 @default.
- W2901914797 cites W2035196702 @default.
- W2901914797 cites W2043335812 @default.
- W2901914797 cites W2043673805 @default.
- W2901914797 cites W2052402549 @default.
- W2901914797 cites W2052903566 @default.
- W2901914797 cites W2066612219 @default.
- W2901914797 cites W2072518837 @default.
- W2901914797 cites W2073503722 @default.
- W2901914797 cites W2077304117 @default.
- W2901914797 cites W2080545724 @default.
- W2901914797 cites W2082349982 @default.
- W2901914797 cites W2087486404 @default.
- W2901914797 cites W2089441588 @default.
- W2901914797 cites W2090270982 @default.
- W2901914797 cites W2092785500 @default.
- W2901914797 cites W2094677081 @default.
- W2901914797 cites W2095464314 @default.
- W2901914797 cites W2097018019 @default.
- W2901914797 cites W2098418965 @default.
- W2901914797 cites W2098633863 @default.
- W2901914797 cites W2104487864 @default.
- W2901914797 cites W2107165817 @default.
- W2901914797 cites W2109006150 @default.
- W2901914797 cites W2109526246 @default.
- W2901914797 cites W2113249705 @default.
- W2901914797 cites W2114535331 @default.
- W2901914797 cites W2121643651 @default.
- W2901914797 cites W2123229198 @default.
- W2901914797 cites W2124121789 @default.
- W2901914797 cites W2132424470 @default.
- W2901914797 cites W2133506218 @default.
- W2901914797 cites W2139294397 @default.
- W2901914797 cites W2144026378 @default.
- W2901914797 cites W2148039553 @default.
- W2901914797 cites W2152634225 @default.
- W2901914797 cites W2154649468 @default.
- W2901914797 cites W2155261478 @default.
- W2901914797 cites W2155632266 @default.
- W2901914797 cites W2158863190 @default.
- W2901914797 cites W2159162331 @default.
- W2901914797 cites W2166312616 @default.
- W2901914797 cites W2166446427 @default.
- W2901914797 cites W2167594433 @default.
- W2901914797 cites W2167869331 @default.
- W2901914797 cites W2175271311 @default.
- W2901914797 cites W2261059368 @default.
- W2901914797 cites W2319245025 @default.
- W2901914797 cites W2327509837 @default.
- W2901914797 cites W2419137750 @default.
- W2901914797 cites W2488702363 @default.
- W2901914797 cites W2508621980 @default.
- W2901914797 cites W2585334141 @default.
- W2901914797 cites W2737103927 @default.
- W2901914797 cites W2755091472 @default.
- W2901914797 cites W2806394060 @default.
- W2901914797 cites W2911964244 @default.
- W2901914797 cites W4229862041 @default.
- W2901914797 cites W633320881 @default.
- W2901914797 doi "https://doi.org/10.1080/01431161.2018.1541110" @default.
- W2901914797 hasPublicationYear "2018" @default.
- W2901914797 type Work @default.
- W2901914797 sameAs 2901914797 @default.
- W2901914797 citedByCount "41" @default.
- W2901914797 countsByYear W29019147972019 @default.
- W2901914797 countsByYear W29019147972020 @default.
- W2901914797 countsByYear W29019147972021 @default.
- W2901914797 countsByYear W29019147972022 @default.
- W2901914797 countsByYear W29019147972023 @default.
- W2901914797 crossrefType "journal-article" @default.
- W2901914797 hasAuthorship W2901914797A5013081978 @default.