Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901917507> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2901917507 endingPage "04018058" @default.
- W2901917507 startingPage "04018058" @default.
- W2901917507 abstract "International roughness index (IRI) is a widely-accepted parameter that indicates pavement performance and ride quality. This study develops a prediction model for IRI using artificial neural networks (ANN) for flexible pavements located in wet-freeze, dry-freeze, wet no-freeze and dry no-freeze climate zones. The long-term pavement performance (LTPP) database is used for obtaining climate and traffic data. Annual average temperature, freezing index, maximum humidity, minimum humidity, precipitation, average daily traffic, and average daily truck traffic are considered as input parameters for predicting IRI. The proposed ANN model is trained with 50% of the available climate and traffic data and the remaining 50% of the data are used for testing the model. The comparison of LTPP recorded data and ANN predicted data is validated by calculating root mean square error (RMSE). The 7-9-9-1 ANN model with a hyperbolic tangent sigmoid transfer function generated the lowest RMSE of 0.01. The 7-9-9-1 ANN model is further tuned for robustness and consistency with several synthetic data sets and 70%, 15%, and 15% of the synthetic data sets are used to train, test, and validate, respectively, the ANN model. The ANN model predicts the IRI with reasonable accuracy and the lowest RMSE 0.027 in measured." @default.
- W2901917507 created "2018-11-29" @default.
- W2901917507 creator A5000681023 @default.
- W2901917507 creator A5014644928 @default.
- W2901917507 creator A5088441967 @default.
- W2901917507 date "2019-03-01" @default.
- W2901917507 modified "2023-10-18" @default.
- W2901917507 title "International Roughness Index Prediction of Flexible Pavements Using Neural Networks" @default.
- W2901917507 cites W1124401970 @default.
- W2901917507 cites W1561269343 @default.
- W2901917507 cites W1980170309 @default.
- W2901917507 cites W1984553473 @default.
- W2901917507 cites W2009303670 @default.
- W2901917507 cites W2031713099 @default.
- W2901917507 cites W2033245860 @default.
- W2901917507 cites W2050823375 @default.
- W2901917507 cites W2075158227 @default.
- W2901917507 cites W2090648676 @default.
- W2901917507 cites W2568988948 @default.
- W2901917507 cites W2747507265 @default.
- W2901917507 doi "https://doi.org/10.1061/jpeodx.0000088" @default.
- W2901917507 hasPublicationYear "2019" @default.
- W2901917507 type Work @default.
- W2901917507 sameAs 2901917507 @default.
- W2901917507 citedByCount "39" @default.
- W2901917507 countsByYear W29019175072019 @default.
- W2901917507 countsByYear W29019175072020 @default.
- W2901917507 countsByYear W29019175072021 @default.
- W2901917507 countsByYear W29019175072022 @default.
- W2901917507 countsByYear W29019175072023 @default.
- W2901917507 crossrefType "journal-article" @default.
- W2901917507 hasAuthorship W2901917507A5000681023 @default.
- W2901917507 hasAuthorship W2901917507A5014644928 @default.
- W2901917507 hasAuthorship W2901917507A5088441967 @default.
- W2901917507 hasConcept C104317684 @default.
- W2901917507 hasConcept C105795698 @default.
- W2901917507 hasConcept C119857082 @default.
- W2901917507 hasConcept C127413603 @default.
- W2901917507 hasConcept C139945424 @default.
- W2901917507 hasConcept C153294291 @default.
- W2901917507 hasConcept C185592680 @default.
- W2901917507 hasConcept C205649164 @default.
- W2901917507 hasConcept C2781212230 @default.
- W2901917507 hasConcept C33923547 @default.
- W2901917507 hasConcept C39432304 @default.
- W2901917507 hasConcept C41008148 @default.
- W2901917507 hasConcept C50644808 @default.
- W2901917507 hasConcept C55493867 @default.
- W2901917507 hasConcept C63479239 @default.
- W2901917507 hasConcept C71039073 @default.
- W2901917507 hasConcept C78519656 @default.
- W2901917507 hasConcept C81388566 @default.
- W2901917507 hasConceptScore W2901917507C104317684 @default.
- W2901917507 hasConceptScore W2901917507C105795698 @default.
- W2901917507 hasConceptScore W2901917507C119857082 @default.
- W2901917507 hasConceptScore W2901917507C127413603 @default.
- W2901917507 hasConceptScore W2901917507C139945424 @default.
- W2901917507 hasConceptScore W2901917507C153294291 @default.
- W2901917507 hasConceptScore W2901917507C185592680 @default.
- W2901917507 hasConceptScore W2901917507C205649164 @default.
- W2901917507 hasConceptScore W2901917507C2781212230 @default.
- W2901917507 hasConceptScore W2901917507C33923547 @default.
- W2901917507 hasConceptScore W2901917507C39432304 @default.
- W2901917507 hasConceptScore W2901917507C41008148 @default.
- W2901917507 hasConceptScore W2901917507C50644808 @default.
- W2901917507 hasConceptScore W2901917507C55493867 @default.
- W2901917507 hasConceptScore W2901917507C63479239 @default.
- W2901917507 hasConceptScore W2901917507C71039073 @default.
- W2901917507 hasConceptScore W2901917507C78519656 @default.
- W2901917507 hasConceptScore W2901917507C81388566 @default.
- W2901917507 hasIssue "1" @default.
- W2901917507 hasLocation W29019175071 @default.
- W2901917507 hasOpenAccess W2901917507 @default.
- W2901917507 hasPrimaryLocation W29019175071 @default.
- W2901917507 hasRelatedWork W2353546784 @default.
- W2901917507 hasRelatedWork W2524230376 @default.
- W2901917507 hasRelatedWork W2748952813 @default.
- W2901917507 hasRelatedWork W2899084033 @default.
- W2901917507 hasRelatedWork W2901917507 @default.
- W2901917507 hasRelatedWork W2913757749 @default.
- W2901917507 hasRelatedWork W3016674335 @default.
- W2901917507 hasRelatedWork W3170224572 @default.
- W2901917507 hasRelatedWork W3209212059 @default.
- W2901917507 hasRelatedWork W4300419762 @default.
- W2901917507 hasVolume "145" @default.
- W2901917507 isParatext "false" @default.
- W2901917507 isRetracted "false" @default.
- W2901917507 magId "2901917507" @default.
- W2901917507 workType "article" @default.