Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901919977> ?p ?o ?g. }
- W2901919977 endingPage "264" @default.
- W2901919977 startingPage "264" @default.
- W2901919977 abstract "This article deals with the mathematical modeling of Tsallis entropy in fuzzy dynamical systems. At first, the concepts of Tsallis entropy and Tsallis conditional entropy of order where is a positive real number not equal to 1, of fuzzy partitions are introduced and their mathematical behavior is described. As an important result, we showed that the Tsallis entropy of fuzzy partitions of order satisfies the property of sub-additivity. This property permits the definition of the Tsallis entropy of order of a fuzzy dynamical system. It was shown that Tsallis entropy is an invariant under isomorphisms of fuzzy dynamical systems; thus, we acquired a tool for distinguishing some non-isomorphic fuzzy dynamical systems. Finally, we formulated a version of the Kolmogorov–Sinai theorem on generators for the case of the Tsallis entropy of a fuzzy dynamical system. The obtained results extend the results provided by Markechová and Riečan in Entropy, 2016, 18, 157, which are particularized to the case of logical entropy." @default.
- W2901919977 created "2018-11-29" @default.
- W2901919977 creator A5020354344 @default.
- W2901919977 date "2018-11-18" @default.
- W2901919977 modified "2023-09-25" @default.
- W2901919977 title "Tsallis Entropy of Fuzzy Dynamical Systems" @default.
- W2901919977 cites W1156828040 @default.
- W2901919977 cites W168055850 @default.
- W2901919977 cites W1965085069 @default.
- W2901919977 cites W1966467498 @default.
- W2901919977 cites W1967925168 @default.
- W2901919977 cites W1971582529 @default.
- W2901919977 cites W1983874169 @default.
- W2901919977 cites W1985956567 @default.
- W2901919977 cites W1991893785 @default.
- W2901919977 cites W1991949889 @default.
- W2901919977 cites W1992843736 @default.
- W2901919977 cites W1995875735 @default.
- W2901919977 cites W1998153379 @default.
- W2901919977 cites W2000983461 @default.
- W2901919977 cites W2007988995 @default.
- W2901919977 cites W2021647212 @default.
- W2901919977 cites W2030247214 @default.
- W2901919977 cites W2031750296 @default.
- W2901919977 cites W2035408897 @default.
- W2901919977 cites W2038857613 @default.
- W2901919977 cites W2048288497 @default.
- W2901919977 cites W2049285243 @default.
- W2901919977 cites W2055629096 @default.
- W2901919977 cites W2062064164 @default.
- W2901919977 cites W2065294460 @default.
- W2901919977 cites W2074918847 @default.
- W2901919977 cites W2078156905 @default.
- W2901919977 cites W2169144828 @default.
- W2901919977 cites W2269305055 @default.
- W2901919977 cites W2324810866 @default.
- W2901919977 cites W2339846562 @default.
- W2901919977 cites W2515438287 @default.
- W2901919977 cites W2568006421 @default.
- W2901919977 cites W2592046722 @default.
- W2901919977 cites W2619617685 @default.
- W2901919977 cites W2733911839 @default.
- W2901919977 cites W2737597558 @default.
- W2901919977 cites W2745657531 @default.
- W2901919977 cites W2790619474 @default.
- W2901919977 cites W2796967526 @default.
- W2901919977 cites W2886114202 @default.
- W2901919977 cites W2887598267 @default.
- W2901919977 cites W3100954504 @default.
- W2901919977 cites W3105524067 @default.
- W2901919977 cites W3125798703 @default.
- W2901919977 cites W3148089400 @default.
- W2901919977 cites W4211007335 @default.
- W2901919977 doi "https://doi.org/10.3390/math6110264" @default.
- W2901919977 hasPublicationYear "2018" @default.
- W2901919977 type Work @default.
- W2901919977 sameAs 2901919977 @default.
- W2901919977 citedByCount "0" @default.
- W2901919977 crossrefType "journal-article" @default.
- W2901919977 hasAuthorship W2901919977A5020354344 @default.
- W2901919977 hasBestOaLocation W29019199771 @default.
- W2901919977 hasConcept C101721835 @default.
- W2901919977 hasConcept C105795698 @default.
- W2901919977 hasConcept C106301342 @default.
- W2901919977 hasConcept C117521176 @default.
- W2901919977 hasConcept C121332964 @default.
- W2901919977 hasConcept C121864883 @default.
- W2901919977 hasConcept C134306372 @default.
- W2901919977 hasConcept C154945302 @default.
- W2901919977 hasConcept C196083917 @default.
- W2901919977 hasConcept C2780056601 @default.
- W2901919977 hasConcept C33923547 @default.
- W2901919977 hasConcept C41008148 @default.
- W2901919977 hasConcept C42047476 @default.
- W2901919977 hasConcept C49775889 @default.
- W2901919977 hasConcept C58166 @default.
- W2901919977 hasConcept C62520636 @default.
- W2901919977 hasConcept C79379906 @default.
- W2901919977 hasConcept C9679016 @default.
- W2901919977 hasConcept C97355855 @default.
- W2901919977 hasConceptScore W2901919977C101721835 @default.
- W2901919977 hasConceptScore W2901919977C105795698 @default.
- W2901919977 hasConceptScore W2901919977C106301342 @default.
- W2901919977 hasConceptScore W2901919977C117521176 @default.
- W2901919977 hasConceptScore W2901919977C121332964 @default.
- W2901919977 hasConceptScore W2901919977C121864883 @default.
- W2901919977 hasConceptScore W2901919977C134306372 @default.
- W2901919977 hasConceptScore W2901919977C154945302 @default.
- W2901919977 hasConceptScore W2901919977C196083917 @default.
- W2901919977 hasConceptScore W2901919977C2780056601 @default.
- W2901919977 hasConceptScore W2901919977C33923547 @default.
- W2901919977 hasConceptScore W2901919977C41008148 @default.
- W2901919977 hasConceptScore W2901919977C42047476 @default.
- W2901919977 hasConceptScore W2901919977C49775889 @default.
- W2901919977 hasConceptScore W2901919977C58166 @default.
- W2901919977 hasConceptScore W2901919977C62520636 @default.
- W2901919977 hasConceptScore W2901919977C79379906 @default.
- W2901919977 hasConceptScore W2901919977C9679016 @default.