Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901935778> ?p ?o ?g. }
- W2901935778 endingPage "285" @default.
- W2901935778 startingPage "273" @default.
- W2901935778 abstract "Purpose To experimentally commission a dual‐energy CT (DECT) joint statistical image reconstruction (JSIR) method, which is built on a linear basis vector model (BVM) of material characterization, for proton stopping power ratio (SPR) estimation. Methods The JSIR‐BVM method builds on the relationship between the energy‐dependent photon attenuation coefficients and the proton stopping power via a pair of BVM component weights. The two BVM component images are simultaneously reconstructed from the acquired DECT sinograms and then used to predict the electron density and mean excitation energy ( I ‐value), which are required by the Bethe equation for SPR computation. A post‐reconstruction image‐based DECT method, which utilizes the two separate CT images reconstructed via the scanner’s software, was implemented for comparison. The DECT measurement data were acquired on a Philips Brilliance scanner at 90 and 140 kVp for two phantoms of different sizes. Each phantom contains 12 different soft and bony tissue surrogates with known compositions. The SPR estimation results were compared to the reference values computed from the known compositions. The difference of the computed water equivalent path lengths (WEPL) across the phantoms between the two methods was also compared. Results The overall root‐mean‐square (RMS) of SPR estimation error of the JSIR‐BVM method are 0.33% and 0.37% for the head‐ and body‐sized phantoms, respectively, and all SPR estimates of the test samples are within 0.7% of the reference ground truth. The image‐based method achieves overall RMS errors of 2.35% and 2.50% for the head‐ and body‐sized phantoms, respectively. The JSIR‐BVM method also reduces the pixel‐wise random variation by 4‐fold to 6‐fold within homogeneous regions compared to the image‐based method. The average differences between the JSIR‐BVM method and the image‐based method are 0.54% and 1.02% for the head‐ and body‐sized phantoms, respectively. Conclusion By taking advantage of an accurate polychromatic CT data model and a model‐based DECT statistical reconstruction algorithm, the JSIR‐BVM method accounts for both systematic bias and random noise in the acquired DECT measurement data. Therefore, the JSIR‐BVM method achieves good accuracy and precision on proton SPR estimation for various tissue surrogates and object sizes. In contrast, the experimentally achievable accuracy of the image‐based method may be limited by the uncertainties in the image formation process. The result suggests that the JSIR‐BVM method has the potential for more accurate SPR prediction compared to post‐reconstruction image‐based methods in clinical settings." @default.
- W2901935778 created "2018-11-29" @default.
- W2901935778 creator A5030952573 @default.
- W2901935778 creator A5032752677 @default.
- W2901935778 creator A5044333105 @default.
- W2901935778 creator A5072453051 @default.
- W2901935778 creator A5079965701 @default.
- W2901935778 creator A5083558440 @default.
- W2901935778 creator A5087321413 @default.
- W2901935778 date "2018-12-04" @default.
- W2901935778 modified "2023-10-18" @default.
- W2901935778 title "Experimental implementation of a joint statistical image reconstruction method for proton stopping power mapping from dual-energy CT data" @default.
- W2901935778 cites W1972037630 @default.
- W2901935778 cites W1998950435 @default.
- W2901935778 cites W1999189079 @default.
- W2901935778 cites W2001583012 @default.
- W2901935778 cites W2001881071 @default.
- W2901935778 cites W2002025007 @default.
- W2901935778 cites W2005801895 @default.
- W2901935778 cites W2015282797 @default.
- W2901935778 cites W2026421256 @default.
- W2901935778 cites W2030328785 @default.
- W2901935778 cites W2031363331 @default.
- W2901935778 cites W2035126433 @default.
- W2901935778 cites W2036419804 @default.
- W2901935778 cites W2038259880 @default.
- W2901935778 cites W2046067167 @default.
- W2901935778 cites W2047605537 @default.
- W2901935778 cites W2057280496 @default.
- W2901935778 cites W2058956138 @default.
- W2901935778 cites W2069580542 @default.
- W2901935778 cites W2088665234 @default.
- W2901935778 cites W2094316886 @default.
- W2901935778 cites W2110641502 @default.
- W2901935778 cites W2110652437 @default.
- W2901935778 cites W2111001758 @default.
- W2901935778 cites W2111938309 @default.
- W2901935778 cites W2120096152 @default.
- W2901935778 cites W2139684042 @default.
- W2901935778 cites W2140836580 @default.
- W2901935778 cites W2143163922 @default.
- W2901935778 cites W2144212200 @default.
- W2901935778 cites W2155969596 @default.
- W2901935778 cites W2169628183 @default.
- W2901935778 cites W2195164371 @default.
- W2901935778 cites W2216191610 @default.
- W2901935778 cites W2223518290 @default.
- W2901935778 cites W2274629475 @default.
- W2901935778 cites W2541015677 @default.
- W2901935778 cites W2568783267 @default.
- W2901935778 cites W2598431361 @default.
- W2901935778 cites W2602966845 @default.
- W2901935778 cites W2619874711 @default.
- W2901935778 cites W2725300025 @default.
- W2901935778 cites W2729566774 @default.
- W2901935778 cites W2750898005 @default.
- W2901935778 cites W2790075359 @default.
- W2901935778 cites W4300497458 @default.
- W2901935778 doi "https://doi.org/10.1002/mp.13287" @default.
- W2901935778 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6519926" @default.
- W2901935778 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30421790" @default.
- W2901935778 hasPublicationYear "2018" @default.
- W2901935778 type Work @default.
- W2901935778 sameAs 2901935778 @default.
- W2901935778 citedByCount "15" @default.
- W2901935778 countsByYear W29019357782019 @default.
- W2901935778 countsByYear W29019357782020 @default.
- W2901935778 countsByYear W29019357782021 @default.
- W2901935778 countsByYear W29019357782022 @default.
- W2901935778 countsByYear W29019357782023 @default.
- W2901935778 crossrefType "journal-article" @default.
- W2901935778 hasAuthorship W2901935778A5030952573 @default.
- W2901935778 hasAuthorship W2901935778A5032752677 @default.
- W2901935778 hasAuthorship W2901935778A5044333105 @default.
- W2901935778 hasAuthorship W2901935778A5072453051 @default.
- W2901935778 hasAuthorship W2901935778A5079965701 @default.
- W2901935778 hasAuthorship W2901935778A5083558440 @default.
- W2901935778 hasAuthorship W2901935778A5087321413 @default.
- W2901935778 hasBestOaLocation W29019357781 @default.
- W2901935778 hasConcept C104293457 @default.
- W2901935778 hasConcept C105795698 @default.
- W2901935778 hasConcept C11413529 @default.
- W2901935778 hasConcept C120665830 @default.
- W2901935778 hasConcept C121332964 @default.
- W2901935778 hasConcept C141379421 @default.
- W2901935778 hasConcept C150432741 @default.
- W2901935778 hasConcept C154945302 @default.
- W2901935778 hasConcept C186370098 @default.
- W2901935778 hasConcept C2779751349 @default.
- W2901935778 hasConcept C2989005 @default.
- W2901935778 hasConcept C33923547 @default.
- W2901935778 hasConcept C41008148 @default.
- W2901935778 hasConcept C555944384 @default.
- W2901935778 hasConcept C71924100 @default.
- W2901935778 hasConcept C76155785 @default.
- W2901935778 hasConceptScore W2901935778C104293457 @default.
- W2901935778 hasConceptScore W2901935778C105795698 @default.
- W2901935778 hasConceptScore W2901935778C11413529 @default.