Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901963602> ?p ?o ?g. }
- W2901963602 abstract "Integrated solutions for analytics over relational databases are of great practical importance as they avoid the costly repeated loop data scientists have to deal with on a daily basis: select features from data residing in relational databases using feature extraction queries involving joins, projections, and aggregations; export the training dataset defined by such queries; convert this dataset into the format of an external learning tool; and train the desired model using this tool. These integrated solutions are also a fertile ground of theoretically fundamental and challenging problems at the intersection of relational and statistical data models. This article introduces a unified framework for training and evaluating a class of statistical learning models over relational databases. This class includes ridge linear regression, polynomial regression, factorization machines, and principal component analysis. We show that, by synergizing key tools from database theory such as schema information, query structure, functional dependencies, recent advances in query evaluation algorithms, and from linear algebra such as tensor and matrix operations, one can formulate relational analytics problems and design efficient (query and data) structure-aware algorithms to solve them. This theoretical development informed the design and implementation of the AC/DC system for structure-aware learning. We benchmark the performance of AC/DC against R, MADlib, libFM, and TensorFlow. For typical retail forecasting and advertisement planning applications, AC/DC can learn polynomial regression models and factorization machines with at least the same accuracy as its competitors and up to three orders of magnitude faster than its competitors whenever they do not run out of memory, exceed 24-hour timeout, or encounter internal design limitations." @default.
- W2901963602 created "2018-11-29" @default.
- W2901963602 creator A5028481269 @default.
- W2901963602 creator A5034538466 @default.
- W2901963602 creator A5035180920 @default.
- W2901963602 creator A5059234529 @default.
- W2901963602 creator A5062573204 @default.
- W2901963602 date "2017-03-14" @default.
- W2901963602 modified "2023-10-16" @default.
- W2901963602 title "Learning Models over Relational Data using Sparse Tensors and Functional Dependencies" @default.
- W2901963602 cites W115903057 @default.
- W2901963602 cites W1523985187 @default.
- W2901963602 cites W1535133592 @default.
- W2901963602 cites W1558832481 @default.
- W2901963602 cites W1669302834 @default.
- W2901963602 cites W1759086394 @default.
- W2901963602 cites W1871489475 @default.
- W2901963602 cites W1955857676 @default.
- W2901963602 cites W1979567624 @default.
- W2901963602 cites W1983022219 @default.
- W2901963602 cites W1992191167 @default.
- W2901963602 cites W2008865455 @default.
- W2901963602 cites W2015362435 @default.
- W2901963602 cites W2028659807 @default.
- W2901963602 cites W2032775418 @default.
- W2901963602 cites W2035814233 @default.
- W2901963602 cites W2044849727 @default.
- W2901963602 cites W2050100848 @default.
- W2901963602 cites W2050882124 @default.
- W2901963602 cites W2055633823 @default.
- W2901963602 cites W2057256946 @default.
- W2901963602 cites W2074694452 @default.
- W2901963602 cites W2076605490 @default.
- W2901963602 cites W2090850279 @default.
- W2901963602 cites W2093625126 @default.
- W2901963602 cites W2094286023 @default.
- W2901963602 cites W2101234009 @default.
- W2901963602 cites W2131975293 @default.
- W2901963602 cites W2139182243 @default.
- W2901963602 cites W2146492010 @default.
- W2901963602 cites W2148693963 @default.
- W2901963602 cites W2185864411 @default.
- W2901963602 cites W2247380138 @default.
- W2901963602 cites W2271840356 @default.
- W2901963602 cites W2284514301 @default.
- W2901963602 cites W2317943859 @default.
- W2901963602 cites W2401576518 @default.
- W2901963602 cites W2402144811 @default.
- W2901963602 cites W2444650685 @default.
- W2901963602 cites W2536131596 @default.
- W2901963602 cites W2563724055 @default.
- W2901963602 cites W2585098096 @default.
- W2901963602 cites W2585633233 @default.
- W2901963602 cites W2604519798 @default.
- W2901963602 cites W2612139288 @default.
- W2901963602 cites W2612545547 @default.
- W2901963602 cites W2613597870 @default.
- W2901963602 cites W2794239667 @default.
- W2901963602 cites W2889897289 @default.
- W2901963602 cites W2950460874 @default.
- W2901963602 cites W2962762811 @default.
- W2901963602 cites W2963288913 @default.
- W2901963602 cites W2963560792 @default.
- W2901963602 cites W1231265883 @default.
- W2901963602 hasPublicationYear "2017" @default.
- W2901963602 type Work @default.
- W2901963602 sameAs 2901963602 @default.
- W2901963602 citedByCount "0" @default.
- W2901963602 crossrefType "posted-content" @default.
- W2901963602 hasAuthorship W2901963602A5028481269 @default.
- W2901963602 hasAuthorship W2901963602A5034538466 @default.
- W2901963602 hasAuthorship W2901963602A5035180920 @default.
- W2901963602 hasAuthorship W2901963602A5059234529 @default.
- W2901963602 hasAuthorship W2901963602A5062573204 @default.
- W2901963602 hasConcept C119857082 @default.
- W2901963602 hasConcept C124101348 @default.
- W2901963602 hasConcept C199360897 @default.
- W2901963602 hasConcept C2778692605 @default.
- W2901963602 hasConcept C40207289 @default.
- W2901963602 hasConcept C41008148 @default.
- W2901963602 hasConcept C5655090 @default.
- W2901963602 hasConcept C79158427 @default.
- W2901963602 hasConcept C80444323 @default.
- W2901963602 hasConceptScore W2901963602C119857082 @default.
- W2901963602 hasConceptScore W2901963602C124101348 @default.
- W2901963602 hasConceptScore W2901963602C199360897 @default.
- W2901963602 hasConceptScore W2901963602C2778692605 @default.
- W2901963602 hasConceptScore W2901963602C40207289 @default.
- W2901963602 hasConceptScore W2901963602C41008148 @default.
- W2901963602 hasConceptScore W2901963602C5655090 @default.
- W2901963602 hasConceptScore W2901963602C79158427 @default.
- W2901963602 hasConceptScore W2901963602C80444323 @default.
- W2901963602 hasLocation W29019636021 @default.
- W2901963602 hasOpenAccess W2901963602 @default.
- W2901963602 hasPrimaryLocation W29019636021 @default.
- W2901963602 hasRelatedWork W1505119859 @default.
- W2901963602 hasRelatedWork W1549615248 @default.
- W2901963602 hasRelatedWork W1585729493 @default.
- W2901963602 hasRelatedWork W1849811180 @default.
- W2901963602 hasRelatedWork W1923878759 @default.