Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901986869> ?p ?o ?g. }
- W2901986869 endingPage "235" @default.
- W2901986869 startingPage "227" @default.
- W2901986869 abstract "Twin-to-twin transfusion syndrome (TTTS) is a potentially lethal condition that affects pregnancies in which twins share a single placenta. The definitive treatment for TTTS is fetoscopic laser photocoagulation, a procedure in which placental blood vessels are selectively cauterized. Challenges in this procedure include difficulty in quickly identifying placental blood vessels due to the many artifacts in the endoscopic video that the surgeon uses for navigation. We propose using deep-learned segmentations of blood vessels to create masks that can be recombined with the original fetoscopic video frame in such a way that the location of placental blood vessels is discernable at a glance.In a process approved by an institutional review board, intraoperative videos were acquired from ten fetoscopic laser photocoagulation surgeries performed at Yale New Haven Hospital. A total of 345 video frames were selected from these videos at regularly spaced time intervals. The video frames were segmented once by an expert human rater (a clinician) and once by a novice, but trained human rater (an undergraduate student). The segmentations were used to train a fully convolutional neural network of 25 layers.The neural network was able to produce segmentations with a high similarity to ground truth segmentations produced by an expert human rater (sensitivity = 92.15% ± 10.69%) and produced segmentations that were significantly more accurate than those produced by a novice human rater (sensitivity = 56.87% ± 21.64%; p < 0.01).A convolutional neural network can be trained to segment placental blood vessels with near-human accuracy and can exceed the accuracy of novice human raters. Recombining these segmentations with the original fetoscopic video frames can produced enhanced frames in which blood vessels are easily detectable. This has significant implications for aiding fetoscopic surgeons-especially trainees who are not yet at an expert level." @default.
- W2901986869 created "2018-12-11" @default.
- W2901986869 creator A5004731015 @default.
- W2901986869 creator A5025245227 @default.
- W2901986869 creator A5026211955 @default.
- W2901986869 creator A5082827994 @default.
- W2901986869 creator A5083553196 @default.
- W2901986869 creator A5085975251 @default.
- W2901986869 date "2018-11-27" @default.
- W2901986869 modified "2023-10-17" @default.
- W2901986869 title "Deep-learned placental vessel segmentation for intraoperative video enhancement in fetoscopic surgery" @default.
- W2901986869 cites W158449949 @default.
- W2901986869 cites W1896736147 @default.
- W2901986869 cites W1901129140 @default.
- W2901986869 cites W1973915234 @default.
- W2901986869 cites W1987869189 @default.
- W2901986869 cites W1991396615 @default.
- W2901986869 cites W2004297745 @default.
- W2901986869 cites W2023114353 @default.
- W2901986869 cites W2055855569 @default.
- W2901986869 cites W2075739742 @default.
- W2901986869 cites W2093090648 @default.
- W2901986869 cites W2093926796 @default.
- W2901986869 cites W2103248916 @default.
- W2901986869 cites W2293498001 @default.
- W2901986869 cites W2507319753 @default.
- W2901986869 cites W2757183854 @default.
- W2901986869 cites W2785845009 @default.
- W2901986869 cites W4243101720 @default.
- W2901986869 cites W2053143874 @default.
- W2901986869 doi "https://doi.org/10.1007/s11548-018-1886-4" @default.
- W2901986869 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6438174" @default.
- W2901986869 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30484115" @default.
- W2901986869 hasPublicationYear "2018" @default.
- W2901986869 type Work @default.
- W2901986869 sameAs 2901986869 @default.
- W2901986869 citedByCount "15" @default.
- W2901986869 countsByYear W29019868692019 @default.
- W2901986869 countsByYear W29019868692020 @default.
- W2901986869 countsByYear W29019868692021 @default.
- W2901986869 countsByYear W29019868692022 @default.
- W2901986869 countsByYear W29019868692023 @default.
- W2901986869 crossrefType "journal-article" @default.
- W2901986869 hasAuthorship W2901986869A5004731015 @default.
- W2901986869 hasAuthorship W2901986869A5025245227 @default.
- W2901986869 hasAuthorship W2901986869A5026211955 @default.
- W2901986869 hasAuthorship W2901986869A5082827994 @default.
- W2901986869 hasAuthorship W2901986869A5083553196 @default.
- W2901986869 hasAuthorship W2901986869A5085975251 @default.
- W2901986869 hasBestOaLocation W29019868692 @default.
- W2901986869 hasConcept C108583219 @default.
- W2901986869 hasConcept C141071460 @default.
- W2901986869 hasConcept C154945302 @default.
- W2901986869 hasConcept C172680121 @default.
- W2901986869 hasConcept C2777303991 @default.
- W2901986869 hasConcept C2778258057 @default.
- W2901986869 hasConcept C2779234561 @default.
- W2901986869 hasConcept C31972630 @default.
- W2901986869 hasConcept C41008148 @default.
- W2901986869 hasConcept C54355233 @default.
- W2901986869 hasConcept C71924100 @default.
- W2901986869 hasConcept C81363708 @default.
- W2901986869 hasConcept C86803240 @default.
- W2901986869 hasConcept C89600930 @default.
- W2901986869 hasConceptScore W2901986869C108583219 @default.
- W2901986869 hasConceptScore W2901986869C141071460 @default.
- W2901986869 hasConceptScore W2901986869C154945302 @default.
- W2901986869 hasConceptScore W2901986869C172680121 @default.
- W2901986869 hasConceptScore W2901986869C2777303991 @default.
- W2901986869 hasConceptScore W2901986869C2778258057 @default.
- W2901986869 hasConceptScore W2901986869C2779234561 @default.
- W2901986869 hasConceptScore W2901986869C31972630 @default.
- W2901986869 hasConceptScore W2901986869C41008148 @default.
- W2901986869 hasConceptScore W2901986869C54355233 @default.
- W2901986869 hasConceptScore W2901986869C71924100 @default.
- W2901986869 hasConceptScore W2901986869C81363708 @default.
- W2901986869 hasConceptScore W2901986869C86803240 @default.
- W2901986869 hasConceptScore W2901986869C89600930 @default.
- W2901986869 hasFunder F4320306080 @default.
- W2901986869 hasIssue "2" @default.
- W2901986869 hasLocation W29019868691 @default.
- W2901986869 hasLocation W29019868692 @default.
- W2901986869 hasLocation W29019868693 @default.
- W2901986869 hasLocation W29019868694 @default.
- W2901986869 hasOpenAccess W2901986869 @default.
- W2901986869 hasPrimaryLocation W29019868691 @default.
- W2901986869 hasRelatedWork W2795209768 @default.
- W2901986869 hasRelatedWork W2893610713 @default.
- W2901986869 hasRelatedWork W2914010220 @default.
- W2901986869 hasRelatedWork W2971526870 @default.
- W2901986869 hasRelatedWork W2994948129 @default.
- W2901986869 hasRelatedWork W3102253946 @default.
- W2901986869 hasRelatedWork W3133861977 @default.
- W2901986869 hasRelatedWork W3144574764 @default.
- W2901986869 hasRelatedWork W4226289457 @default.
- W2901986869 hasRelatedWork W4293211451 @default.
- W2901986869 hasVolume "14" @default.
- W2901986869 isParatext "false" @default.