Matches in SemOpenAlex for { <https://semopenalex.org/work/W2902000980> ?p ?o ?g. }
- W2902000980 abstract "Ultrasound (US) image despeckling is a problem of high clinical importance. Machine learning solutions to the problem are considered impractical due to the unavailability of speckle-free US image dataset. On the other hand, the classical approaches, which are able to provide the desired outputs, have limitations like input dependent parameter tuning. In this work, a convolutional neural network (CNN) is developed which learns to remove speckle from US images using the outputs of these classical approaches. It is observed that the existing approaches can be combined in a complementary manner to generate an output better than their individual outputs. Thus, the CNN is trained using the individual outputs as well as the output ensembles. It eliminates the cumbersome process of parameter tuning required by the existing approaches for every new input. Further, the proposed CNN is able to outperform the state-of-the-art despeckling approaches and produces the outputs even better than the ensembles for certain images." @default.
- W2902000980 created "2018-12-11" @default.
- W2902000980 creator A5030974286 @default.
- W2902000980 creator A5034627255 @default.
- W2902000980 creator A5042384397 @default.
- W2902000980 creator A5060292436 @default.
- W2902000980 creator A5086242686 @default.
- W2902000980 date "2018-08-01" @default.
- W2902000980 modified "2023-09-26" @default.
- W2902000980 title "Despeckling CNN with Ensembles of Classical Outputs" @default.
- W2902000980 cites W1533861849 @default.
- W2902000980 cites W1982348168 @default.
- W2902000980 cites W1998913070 @default.
- W2902000980 cites W2004928853 @default.
- W2902000980 cites W2031488994 @default.
- W2902000980 cites W2078278782 @default.
- W2902000980 cites W2096413230 @default.
- W2902000980 cites W2130094715 @default.
- W2902000980 cites W2133665775 @default.
- W2902000980 cites W2136473316 @default.
- W2902000980 cites W2140894975 @default.
- W2902000980 cites W2145803225 @default.
- W2902000980 cites W2145823319 @default.
- W2902000980 cites W2156722185 @default.
- W2902000980 cites W2163605009 @default.
- W2902000980 cites W2170271483 @default.
- W2902000980 cites W2170681857 @default.
- W2902000980 cites W2194775991 @default.
- W2902000980 cites W2400646860 @default.
- W2902000980 cites W2508457857 @default.
- W2902000980 cites W2509784253 @default.
- W2902000980 cites W2562637781 @default.
- W2902000980 cites W2704118014 @default.
- W2902000980 cites W2764248688 @default.
- W2902000980 cites W2765647312 @default.
- W2902000980 cites W2963150697 @default.
- W2902000980 cites W2964121744 @default.
- W2902000980 cites W3037024285 @default.
- W2902000980 doi "https://doi.org/10.1109/icpr.2018.8545031" @default.
- W2902000980 hasPublicationYear "2018" @default.
- W2902000980 type Work @default.
- W2902000980 sameAs 2902000980 @default.
- W2902000980 citedByCount "3" @default.
- W2902000980 countsByYear W29020009802020 @default.
- W2902000980 countsByYear W29020009802022 @default.
- W2902000980 crossrefType "proceedings-article" @default.
- W2902000980 hasAuthorship W2902000980A5030974286 @default.
- W2902000980 hasAuthorship W2902000980A5034627255 @default.
- W2902000980 hasAuthorship W2902000980A5042384397 @default.
- W2902000980 hasAuthorship W2902000980A5060292436 @default.
- W2902000980 hasAuthorship W2902000980A5086242686 @default.
- W2902000980 hasConcept C102290492 @default.
- W2902000980 hasConcept C105795698 @default.
- W2902000980 hasConcept C108583219 @default.
- W2902000980 hasConcept C111919701 @default.
- W2902000980 hasConcept C115961682 @default.
- W2902000980 hasConcept C119857082 @default.
- W2902000980 hasConcept C153180895 @default.
- W2902000980 hasConcept C154945302 @default.
- W2902000980 hasConcept C2780505938 @default.
- W2902000980 hasConcept C33923547 @default.
- W2902000980 hasConcept C41008148 @default.
- W2902000980 hasConcept C81363708 @default.
- W2902000980 hasConcept C98045186 @default.
- W2902000980 hasConceptScore W2902000980C102290492 @default.
- W2902000980 hasConceptScore W2902000980C105795698 @default.
- W2902000980 hasConceptScore W2902000980C108583219 @default.
- W2902000980 hasConceptScore W2902000980C111919701 @default.
- W2902000980 hasConceptScore W2902000980C115961682 @default.
- W2902000980 hasConceptScore W2902000980C119857082 @default.
- W2902000980 hasConceptScore W2902000980C153180895 @default.
- W2902000980 hasConceptScore W2902000980C154945302 @default.
- W2902000980 hasConceptScore W2902000980C2780505938 @default.
- W2902000980 hasConceptScore W2902000980C33923547 @default.
- W2902000980 hasConceptScore W2902000980C41008148 @default.
- W2902000980 hasConceptScore W2902000980C81363708 @default.
- W2902000980 hasConceptScore W2902000980C98045186 @default.
- W2902000980 hasLocation W29020009801 @default.
- W2902000980 hasOpenAccess W2902000980 @default.
- W2902000980 hasPrimaryLocation W29020009801 @default.
- W2902000980 hasRelatedWork W2098477387 @default.
- W2902000980 hasRelatedWork W2124964692 @default.
- W2902000980 hasRelatedWork W2547977663 @default.
- W2902000980 hasRelatedWork W2576674590 @default.
- W2902000980 hasRelatedWork W2581766818 @default.
- W2902000980 hasRelatedWork W2590620738 @default.
- W2902000980 hasRelatedWork W2738449271 @default.
- W2902000980 hasRelatedWork W2741826132 @default.
- W2902000980 hasRelatedWork W2752502194 @default.
- W2902000980 hasRelatedWork W2770783204 @default.
- W2902000980 hasRelatedWork W2795760368 @default.
- W2902000980 hasRelatedWork W2897450618 @default.
- W2902000980 hasRelatedWork W2929459995 @default.
- W2902000980 hasRelatedWork W2948634622 @default.
- W2902000980 hasRelatedWork W2957574739 @default.
- W2902000980 hasRelatedWork W2965155899 @default.
- W2902000980 hasRelatedWork W3035922457 @default.
- W2902000980 hasRelatedWork W3048275157 @default.
- W2902000980 hasRelatedWork W3082489683 @default.
- W2902000980 hasRelatedWork W3111674972 @default.