Matches in SemOpenAlex for { <https://semopenalex.org/work/W2902016061> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2902016061 abstract "Forecasting future traffic flows from previous ones is a challenging problem because of their complex and dynamic nature of spatio-temporal structures. Most existing graph-based CNNs attempt to capture the static relations while largely neglecting the dynamics underlying sequential data. In this paper, we present dynamic spatio-temporal graph-based CNNs (DST-GCNNs) by learning expressive features to represent spatio-temporal structures and predict future traffic flows from surveillance video data. In particular, DST-GCNN is a two stream network. In the flow prediction stream, we present a novel graph-based spatio-temporal convolutional layer to extract features from a graph representation of traffic flows. Then several such layers are stacked together to predict future flows over time. Meanwhile, the relations between traffic flows in the graph are often time variant as the traffic condition changes over time. To capture the graph dynamics, we use the graph prediction stream to predict the dynamic graph structures, and the predicted structures are fed into the flow prediction stream. Experiments on real datasets demonstrate that the proposed model achieves competitive performances compared with the other state-of-the-art methods." @default.
- W2902016061 created "2018-12-11" @default.
- W2902016061 creator A5015477789 @default.
- W2902016061 creator A5024965898 @default.
- W2902016061 creator A5051125527 @default.
- W2902016061 creator A5051363890 @default.
- W2902016061 creator A5054709496 @default.
- W2902016061 creator A5057196915 @default.
- W2902016061 creator A5064488370 @default.
- W2902016061 creator A5078722945 @default.
- W2902016061 creator A5079865276 @default.
- W2902016061 creator A5091319287 @default.
- W2902016061 creator A5091722815 @default.
- W2902016061 date "2018-12-05" @default.
- W2902016061 modified "2023-09-22" @default.
- W2902016061 title "Dynamic Spatio-temporal Graph-based CNNs for Traffic Prediction" @default.
- W2902016061 cites W1529430712 @default.
- W2902016061 cites W158283968 @default.
- W2902016061 cites W1973943669 @default.
- W2902016061 cites W2036785686 @default.
- W2902016061 cites W2040297119 @default.
- W2902016061 cites W2080731889 @default.
- W2902016061 cites W2101234009 @default.
- W2902016061 cites W2130942839 @default.
- W2902016061 cites W2146399611 @default.
- W2902016061 cites W2154889144 @default.
- W2902016061 cites W2158787690 @default.
- W2902016061 cites W2165991108 @default.
- W2902016061 cites W2528040708 @default.
- W2902016061 cites W2528639018 @default.
- W2902016061 cites W2560675361 @default.
- W2902016061 cites W2579495707 @default.
- W2902016061 cites W2612445135 @default.
- W2902016061 cites W2729281059 @default.
- W2902016061 cites W2735405280 @default.
- W2902016061 cites W2768008502 @default.
- W2902016061 cites W2798640882 @default.
- W2902016061 cites W2899771611 @default.
- W2902016061 cites W2951575932 @default.
- W2902016061 cites W2963165299 @default.
- W2902016061 cites W2964321699 @default.
- W2902016061 cites W3103720336 @default.
- W2902016061 cites W3106250896 @default.
- W2902016061 cites W637153065 @default.
- W2902016061 hasPublicationYear "2018" @default.
- W2902016061 type Work @default.
- W2902016061 sameAs 2902016061 @default.
- W2902016061 citedByCount "5" @default.
- W2902016061 countsByYear W29020160612019 @default.
- W2902016061 countsByYear W29020160612020 @default.
- W2902016061 countsByYear W29020160612021 @default.
- W2902016061 crossrefType "posted-content" @default.
- W2902016061 hasAuthorship W2902016061A5015477789 @default.
- W2902016061 hasAuthorship W2902016061A5024965898 @default.
- W2902016061 hasAuthorship W2902016061A5051125527 @default.
- W2902016061 hasAuthorship W2902016061A5051363890 @default.
- W2902016061 hasAuthorship W2902016061A5054709496 @default.
- W2902016061 hasAuthorship W2902016061A5057196915 @default.
- W2902016061 hasAuthorship W2902016061A5064488370 @default.
- W2902016061 hasAuthorship W2902016061A5078722945 @default.
- W2902016061 hasAuthorship W2902016061A5079865276 @default.
- W2902016061 hasAuthorship W2902016061A5091319287 @default.
- W2902016061 hasAuthorship W2902016061A5091722815 @default.
- W2902016061 hasConcept C124101348 @default.
- W2902016061 hasConcept C132525143 @default.
- W2902016061 hasConcept C41008148 @default.
- W2902016061 hasConcept C80444323 @default.
- W2902016061 hasConceptScore W2902016061C124101348 @default.
- W2902016061 hasConceptScore W2902016061C132525143 @default.
- W2902016061 hasConceptScore W2902016061C41008148 @default.
- W2902016061 hasConceptScore W2902016061C80444323 @default.
- W2902016061 hasLocation W29020160611 @default.
- W2902016061 hasOpenAccess W2902016061 @default.
- W2902016061 hasPrimaryLocation W29020160611 @default.
- W2902016061 hasRelatedWork W2036785686 @default.
- W2902016061 hasRelatedWork W2064675550 @default.
- W2902016061 hasRelatedWork W2528639018 @default.
- W2902016061 hasRelatedWork W2903871660 @default.
- W2902016061 hasRelatedWork W2904449562 @default.
- W2902016061 hasRelatedWork W2904832339 @default.
- W2902016061 hasRelatedWork W2920651164 @default.
- W2902016061 hasRelatedWork W2922228302 @default.
- W2902016061 hasRelatedWork W2935726879 @default.
- W2902016061 hasRelatedWork W2937967841 @default.
- W2902016061 hasRelatedWork W2963124587 @default.
- W2902016061 hasRelatedWork W2963358464 @default.
- W2902016061 hasRelatedWork W2996451395 @default.
- W2902016061 hasRelatedWork W3033688252 @default.
- W2902016061 hasRelatedWork W3103720336 @default.
- W2902016061 hasRelatedWork W3112239519 @default.
- W2902016061 hasRelatedWork W3156351347 @default.
- W2902016061 hasRelatedWork W3159176403 @default.
- W2902016061 hasRelatedWork W3199464873 @default.
- W2902016061 hasRelatedWork W3204702407 @default.
- W2902016061 isParatext "false" @default.
- W2902016061 isRetracted "false" @default.
- W2902016061 magId "2902016061" @default.
- W2902016061 workType "article" @default.