Matches in SemOpenAlex for { <https://semopenalex.org/work/W2902018766> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2902018766 abstract "This paper proposes a methodology to assist Acute Care Physicians in diagnosing the heart condition of a patient with high accuracy within the least possible time. As the initial step in diagnosing the heart condition, we focused on automatically classifying the Left Ventricular Systolic function of the Human Heart into two categories as normal or abnormal. The proposed solution is a combination of image processing techniques and Artificial Neural Networks (ANN). Images obtained from Echocardiography videos were subjected to a series of image pre-processing techniques. The two parameters; Left Ventricular Internal Systolic diameter (LVIDs) and Left Ventricular Internal Diastolic diameter (LVIDd) were extracted from the echocardiography videos using a feature extraction algorithm. These two parameter values were used to calculate the Ejection Fraction (EF). LVIDs, LVIDd and EF values were then used as inputs to the Artificial Neural Network. A feed-forward back propagation neural network was trained as a classifier to distinguish between normal and abnormal Left Ventricular Systolic function. The cardiologist's decision was used as the expected output for the training of the Artificial Neural Network. A dataset of 50 images that included both normal and abnormal heart condition was used. The trained Artificial Neural Network could classify the images with an accuracy of 98%." @default.
- W2902018766 created "2018-12-11" @default.
- W2902018766 creator A5005000118 @default.
- W2902018766 creator A5022549153 @default.
- W2902018766 creator A5028837231 @default.
- W2902018766 creator A5061414215 @default.
- W2902018766 creator A5069250817 @default.
- W2902018766 creator A5083098779 @default.
- W2902018766 date "2018-10-01" @default.
- W2902018766 modified "2023-09-25" @default.
- W2902018766 title "Artificial Neural Network Application in Classifying the Left Ventricular Function of the Human Heart Using Echocardiography" @default.
- W2902018766 cites W1664288980 @default.
- W2902018766 cites W1950765772 @default.
- W2902018766 cites W1993300369 @default.
- W2902018766 cites W2044823137 @default.
- W2902018766 cites W2061564130 @default.
- W2902018766 cites W2090118382 @default.
- W2902018766 cites W2107500316 @default.
- W2902018766 cites W2110616439 @default.
- W2902018766 cites W2116969688 @default.
- W2902018766 cites W2138459630 @default.
- W2902018766 cites W2162280125 @default.
- W2902018766 cites W2170505850 @default.
- W2902018766 cites W4246236431 @default.
- W2902018766 doi "https://doi.org/10.1109/nitc.2018.8550082" @default.
- W2902018766 hasPublicationYear "2018" @default.
- W2902018766 type Work @default.
- W2902018766 sameAs 2902018766 @default.
- W2902018766 citedByCount "2" @default.
- W2902018766 countsByYear W29020187662022 @default.
- W2902018766 countsByYear W29020187662023 @default.
- W2902018766 crossrefType "proceedings-article" @default.
- W2902018766 hasAuthorship W2902018766A5005000118 @default.
- W2902018766 hasAuthorship W2902018766A5022549153 @default.
- W2902018766 hasAuthorship W2902018766A5028837231 @default.
- W2902018766 hasAuthorship W2902018766A5061414215 @default.
- W2902018766 hasAuthorship W2902018766A5069250817 @default.
- W2902018766 hasAuthorship W2902018766A5083098779 @default.
- W2902018766 hasConcept C126322002 @default.
- W2902018766 hasConcept C154945302 @default.
- W2902018766 hasConcept C164705383 @default.
- W2902018766 hasConcept C2993376042 @default.
- W2902018766 hasConcept C41008148 @default.
- W2902018766 hasConcept C50644808 @default.
- W2902018766 hasConcept C71924100 @default.
- W2902018766 hasConceptScore W2902018766C126322002 @default.
- W2902018766 hasConceptScore W2902018766C154945302 @default.
- W2902018766 hasConceptScore W2902018766C164705383 @default.
- W2902018766 hasConceptScore W2902018766C2993376042 @default.
- W2902018766 hasConceptScore W2902018766C41008148 @default.
- W2902018766 hasConceptScore W2902018766C50644808 @default.
- W2902018766 hasConceptScore W2902018766C71924100 @default.
- W2902018766 hasLocation W29020187661 @default.
- W2902018766 hasOpenAccess W2902018766 @default.
- W2902018766 hasPrimaryLocation W29020187661 @default.
- W2902018766 hasRelatedWork W2011347913 @default.
- W2902018766 hasRelatedWork W2049397185 @default.
- W2902018766 hasRelatedWork W2073151595 @default.
- W2902018766 hasRelatedWork W2074833529 @default.
- W2902018766 hasRelatedWork W2159512267 @default.
- W2902018766 hasRelatedWork W2304633692 @default.
- W2902018766 hasRelatedWork W2399063111 @default.
- W2902018766 hasRelatedWork W2748952813 @default.
- W2902018766 hasRelatedWork W2899084033 @default.
- W2902018766 hasRelatedWork W3141700921 @default.
- W2902018766 isParatext "false" @default.
- W2902018766 isRetracted "false" @default.
- W2902018766 magId "2902018766" @default.
- W2902018766 workType "article" @default.