Matches in SemOpenAlex for { <https://semopenalex.org/work/W2902022791> ?p ?o ?g. }
Showing items 1 to 52 of
52
with 100 items per page.
- W2902022791 abstract "A Scientific method of selecting all possible fraudulent combinations from the weekly pre-auction, where tea samples are bided by the tea exporting companies to be purchased for exporting purposes is critical to mitigate frauds in tea exports from Sri Lanka. Therefore, building a proper mechanism to predict fraudulent samples received by the tea tasting unit of the Sri Lanka Tea Board is a challenge for the government's regulatory/testing body. The main focus of this paper is to identify a suitable pre auction sample selection algorithm with Machine Learning approach to develop a self-learning sampling system to pick the most likely fraudulent samples for physical testing. The performance impact of tea tasting data feature set is demonstrated on Locally Weighted Learning, Logistic Regression, Random Forest, C4.5 Naive Bayes and Bayesian Network. Though classification accuracy between algorithms is similar, computational performance can differ ominously. Thus, we then show that it is worthwhile differentiating algorithms based on computational performance rather than on classification accuracy alone." @default.
- W2902022791 created "2018-12-11" @default.
- W2902022791 creator A5017148619 @default.
- W2902022791 creator A5090837769 @default.
- W2902022791 date "2018-10-01" @default.
- W2902022791 modified "2023-09-23" @default.
- W2902022791 title "Machine Learning for Pre-Auction Sample Selection" @default.
- W2902022791 cites W1945974077 @default.
- W2902022791 cites W2073089243 @default.
- W2902022791 cites W2767906932 @default.
- W2902022791 cites W2911964244 @default.
- W2902022791 cites W4241649586 @default.
- W2902022791 doi "https://doi.org/10.1109/nitc.2018.8550083" @default.
- W2902022791 hasPublicationYear "2018" @default.
- W2902022791 type Work @default.
- W2902022791 sameAs 2902022791 @default.
- W2902022791 citedByCount "1" @default.
- W2902022791 countsByYear W29020227912022 @default.
- W2902022791 crossrefType "proceedings-article" @default.
- W2902022791 hasAuthorship W2902022791A5017148619 @default.
- W2902022791 hasAuthorship W2902022791A5090837769 @default.
- W2902022791 hasConcept C119857082 @default.
- W2902022791 hasConcept C154945302 @default.
- W2902022791 hasConcept C185592680 @default.
- W2902022791 hasConcept C198531522 @default.
- W2902022791 hasConcept C41008148 @default.
- W2902022791 hasConcept C43617362 @default.
- W2902022791 hasConcept C81917197 @default.
- W2902022791 hasConceptScore W2902022791C119857082 @default.
- W2902022791 hasConceptScore W2902022791C154945302 @default.
- W2902022791 hasConceptScore W2902022791C185592680 @default.
- W2902022791 hasConceptScore W2902022791C198531522 @default.
- W2902022791 hasConceptScore W2902022791C41008148 @default.
- W2902022791 hasConceptScore W2902022791C43617362 @default.
- W2902022791 hasConceptScore W2902022791C81917197 @default.
- W2902022791 hasLocation W29020227911 @default.
- W2902022791 hasOpenAccess W2902022791 @default.
- W2902022791 hasPrimaryLocation W29020227911 @default.
- W2902022791 hasRelatedWork W2961085424 @default.
- W2902022791 hasRelatedWork W3046775127 @default.
- W2902022791 hasRelatedWork W3107474891 @default.
- W2902022791 hasRelatedWork W3168791910 @default.
- W2902022791 hasRelatedWork W4205958290 @default.
- W2902022791 hasRelatedWork W4286629047 @default.
- W2902022791 hasRelatedWork W4289860834 @default.
- W2902022791 hasRelatedWork W4306321456 @default.
- W2902022791 hasRelatedWork W4306674287 @default.
- W2902022791 hasRelatedWork W4224009465 @default.
- W2902022791 isParatext "false" @default.
- W2902022791 isRetracted "false" @default.
- W2902022791 magId "2902022791" @default.
- W2902022791 workType "article" @default.