Matches in SemOpenAlex for { <https://semopenalex.org/work/W2902113407> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2902113407 abstract "11The corresponding author is Prof. Yang Cong. This work is supported by Nature Science Foundation of China under Grant (61722311, U1613214, 61533015) and CAS-Youth Innovation Promotion Association Scholarship (2012163)Recently, many machine learning problems rely on a valuable tool: metric learning. However, in many applications, large-scale applications embedded in high-dimensional feature space may induce both computation and storage requirements to grow quadratically. In order to tackle these challenges, in this paper, we intend to establish a robust metric learning formulation with the expectation that online metric learning and parallel optimization can solve large-scale and high-dimensional data efficiently, respectively. Specifically, based on the matrix factorization strategy, the first step aims to learn a similarity function in the objective formulation for similarity measurement; in the second step, we derive a variational trace norm to promote low-rankness on the transformation matrix. After converting this variational regularization into its separable form, for the model optimization, we present an parallel block coordinate descent method to learn the optimal metric parameters, which can handle the high-dimensional data in an efficient way. Crucially, our method shares the efficiency and flexibility of block coordinate descent method, and it is also guaranteed to converge to the optimal solution. Finally, we evaluate our approach by analyzing scene categorization dataset with tens of thousands of dimensions, and the experimental results show the effectiveness of our proposed model." @default.
- W2902113407 created "2018-12-11" @default.
- W2902113407 creator A5006477225 @default.
- W2902113407 creator A5030863883 @default.
- W2902113407 creator A5031333887 @default.
- W2902113407 creator A5086347026 @default.
- W2902113407 date "2018-08-01" @default.
- W2902113407 modified "2023-09-27" @default.
- W2902113407 title "Online Low-Rank Metric Learning via Parallel Coordinate Descent Method" @default.
- W2902113407 cites W115818832 @default.
- W2902113407 cites W1977193486 @default.
- W2902113407 cites W2004080111 @default.
- W2902113407 cites W2014987111 @default.
- W2902113407 cites W2015563892 @default.
- W2902113407 cites W2027922120 @default.
- W2902113407 cites W2065180801 @default.
- W2902113407 cites W2085120256 @default.
- W2902113407 cites W2087044413 @default.
- W2902113407 cites W2118840614 @default.
- W2902113407 cites W2157911873 @default.
- W2902113407 cites W2602948783 @default.
- W2902113407 cites W4210880854 @default.
- W2902113407 doi "https://doi.org/10.1109/icpr.2018.8546239" @default.
- W2902113407 hasPublicationYear "2018" @default.
- W2902113407 type Work @default.
- W2902113407 sameAs 2902113407 @default.
- W2902113407 citedByCount "3" @default.
- W2902113407 countsByYear W29021134072019 @default.
- W2902113407 countsByYear W29021134072022 @default.
- W2902113407 crossrefType "proceedings-article" @default.
- W2902113407 hasAuthorship W2902113407A5006477225 @default.
- W2902113407 hasAuthorship W2902113407A5030863883 @default.
- W2902113407 hasAuthorship W2902113407A5031333887 @default.
- W2902113407 hasAuthorship W2902113407A5086347026 @default.
- W2902113407 hasConcept C11413529 @default.
- W2902113407 hasConcept C126255220 @default.
- W2902113407 hasConcept C154945302 @default.
- W2902113407 hasConcept C157553263 @default.
- W2902113407 hasConcept C162324750 @default.
- W2902113407 hasConcept C176217482 @default.
- W2902113407 hasConcept C21547014 @default.
- W2902113407 hasConcept C33923547 @default.
- W2902113407 hasConcept C41008148 @default.
- W2902113407 hasConcept C80444323 @default.
- W2902113407 hasConceptScore W2902113407C11413529 @default.
- W2902113407 hasConceptScore W2902113407C126255220 @default.
- W2902113407 hasConceptScore W2902113407C154945302 @default.
- W2902113407 hasConceptScore W2902113407C157553263 @default.
- W2902113407 hasConceptScore W2902113407C162324750 @default.
- W2902113407 hasConceptScore W2902113407C176217482 @default.
- W2902113407 hasConceptScore W2902113407C21547014 @default.
- W2902113407 hasConceptScore W2902113407C33923547 @default.
- W2902113407 hasConceptScore W2902113407C41008148 @default.
- W2902113407 hasConceptScore W2902113407C80444323 @default.
- W2902113407 hasLocation W29021134071 @default.
- W2902113407 hasOpenAccess W2902113407 @default.
- W2902113407 hasPrimaryLocation W29021134071 @default.
- W2902113407 hasRelatedWork W1871527987 @default.
- W2902113407 hasRelatedWork W189527201 @default.
- W2902113407 hasRelatedWork W203437397 @default.
- W2902113407 hasRelatedWork W2131928195 @default.
- W2902113407 hasRelatedWork W2134982367 @default.
- W2902113407 hasRelatedWork W2160814101 @default.
- W2902113407 hasRelatedWork W2170912114 @default.
- W2902113407 hasRelatedWork W2182206537 @default.
- W2902113407 hasRelatedWork W2589171594 @default.
- W2902113407 hasRelatedWork W2607462057 @default.
- W2902113407 hasRelatedWork W2609306248 @default.
- W2902113407 hasRelatedWork W2782903244 @default.
- W2902113407 hasRelatedWork W2809317233 @default.
- W2902113407 hasRelatedWork W2922025696 @default.
- W2902113407 hasRelatedWork W2964218708 @default.
- W2902113407 hasRelatedWork W2972555185 @default.
- W2902113407 hasRelatedWork W2997867986 @default.
- W2902113407 hasRelatedWork W3080700717 @default.
- W2902113407 hasRelatedWork W3167479704 @default.
- W2902113407 hasRelatedWork W3189406951 @default.
- W2902113407 isParatext "false" @default.
- W2902113407 isRetracted "false" @default.
- W2902113407 magId "2902113407" @default.
- W2902113407 workType "article" @default.