Matches in SemOpenAlex for { <https://semopenalex.org/work/W2902165764> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2902165764 abstract "Abstract. Sea surface temperature (SST) is the major factor that affects the ocean-atmosphere interaction, and in turn the accurate prediction of SST is the key to ocean dynamic prediction. In this paper, an SST predicting method based on improved empirical mode decomposition (EMD) algorithms and back-propagation neural network (BPNN) is proposed. Two different EMD algorithms have been applied extensively for analyzing time-series SST data and some nonlinear stochastic signals. Ensemble empirical mode decomposition (EEMD) algorithm and Complementary Ensemble Empirical Mode Decomposition (CEEMD) algorithm are two improved algorithms of EMD, which can effectively handle the mode-mixing problem and decompose the original data into more stationary signals with different frequencies. Each Intrinsic Mode Function (IMF) has been taken as an input data to the back-propagation neural network model. The final predicted SST data is obtained by aggregating the predicted data of individual IMF. A case study, of the monthly mean sea surface temperature anomaly (SSTA) in the northeastern region of the North Pacific, shows that the proposed hybrid CEEMD-BPNN model is much more accurate than the hybrid EEMD-BPNN model, and the prediction accuracy based on BP neural network is improved by the CEEMD method. Statistical analysis of the case study demonstrates that applying the proposed hybrid CEEMD-BPNN model is effective for the SST prediction." @default.
- W2902165764 created "2018-12-11" @default.
- W2902165764 creator A5004234882 @default.
- W2902165764 creator A5010479652 @default.
- W2902165764 creator A5035358667 @default.
- W2902165764 creator A5048711306 @default.
- W2902165764 creator A5075360969 @default.
- W2902165764 date "2018-11-28" @default.
- W2902165764 modified "2023-09-30" @default.
- W2902165764 title "Hybrid improved EMD-BPNN model for the prediction of sea surface temperature" @default.
- W2902165764 doi "https://doi.org/10.5194/os-2018-101" @default.
- W2902165764 hasPublicationYear "2018" @default.
- W2902165764 type Work @default.
- W2902165764 sameAs 2902165764 @default.
- W2902165764 citedByCount "0" @default.
- W2902165764 crossrefType "posted-content" @default.
- W2902165764 hasAuthorship W2902165764A5004234882 @default.
- W2902165764 hasAuthorship W2902165764A5010479652 @default.
- W2902165764 hasAuthorship W2902165764A5035358667 @default.
- W2902165764 hasAuthorship W2902165764A5048711306 @default.
- W2902165764 hasAuthorship W2902165764A5075360969 @default.
- W2902165764 hasBestOaLocation W29021657641 @default.
- W2902165764 hasConcept C111919701 @default.
- W2902165764 hasConcept C112633086 @default.
- W2902165764 hasConcept C11413529 @default.
- W2902165764 hasConcept C121332964 @default.
- W2902165764 hasConcept C127313418 @default.
- W2902165764 hasConcept C12997251 @default.
- W2902165764 hasConcept C134097258 @default.
- W2902165764 hasConcept C154945302 @default.
- W2902165764 hasConcept C25570617 @default.
- W2902165764 hasConcept C26873012 @default.
- W2902165764 hasConcept C41008148 @default.
- W2902165764 hasConcept C48677424 @default.
- W2902165764 hasConcept C49204034 @default.
- W2902165764 hasConcept C50644808 @default.
- W2902165764 hasConcept C76155785 @default.
- W2902165764 hasConceptScore W2902165764C111919701 @default.
- W2902165764 hasConceptScore W2902165764C112633086 @default.
- W2902165764 hasConceptScore W2902165764C11413529 @default.
- W2902165764 hasConceptScore W2902165764C121332964 @default.
- W2902165764 hasConceptScore W2902165764C127313418 @default.
- W2902165764 hasConceptScore W2902165764C12997251 @default.
- W2902165764 hasConceptScore W2902165764C134097258 @default.
- W2902165764 hasConceptScore W2902165764C154945302 @default.
- W2902165764 hasConceptScore W2902165764C25570617 @default.
- W2902165764 hasConceptScore W2902165764C26873012 @default.
- W2902165764 hasConceptScore W2902165764C41008148 @default.
- W2902165764 hasConceptScore W2902165764C48677424 @default.
- W2902165764 hasConceptScore W2902165764C49204034 @default.
- W2902165764 hasConceptScore W2902165764C50644808 @default.
- W2902165764 hasConceptScore W2902165764C76155785 @default.
- W2902165764 hasFunder F4320321001 @default.
- W2902165764 hasLocation W29021657641 @default.
- W2902165764 hasLocation W29021657642 @default.
- W2902165764 hasOpenAccess W2902165764 @default.
- W2902165764 hasPrimaryLocation W29021657641 @default.
- W2902165764 hasRelatedWork W2352888995 @default.
- W2902165764 hasRelatedWork W2365661139 @default.
- W2902165764 hasRelatedWork W2373247039 @default.
- W2902165764 hasRelatedWork W2385420942 @default.
- W2902165764 hasRelatedWork W2386245437 @default.
- W2902165764 hasRelatedWork W2386322423 @default.
- W2902165764 hasRelatedWork W2387617734 @default.
- W2902165764 hasRelatedWork W2947542022 @default.
- W2902165764 hasRelatedWork W2951159066 @default.
- W2902165764 hasRelatedWork W3130622650 @default.
- W2902165764 isParatext "false" @default.
- W2902165764 isRetracted "false" @default.
- W2902165764 magId "2902165764" @default.
- W2902165764 workType "article" @default.