Matches in SemOpenAlex for { <https://semopenalex.org/work/W2902263439> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2902263439 abstract "SNNs are referred to as the third generation of ANNs. Inspired from biological observations and recent advances in neuroscience, proposed methods increase the power of SNNs. Today, the main challenge is to discover efficient plasticity rules for SNNs. Our research aims are to explore/extend computational models of plasticity. We make various achievements using ReSuMe, DelReSuMe, and R-STDP based on the fundamental plasticity of STDP.The information in SNNs is encoded in the patterns of firing activities. For biological plausibility, it is necessary to use multi-spike learning instead of single-spike. Therefore, we focus on encoding inputs/outputs using multiple spikes. ReSuMe is capable of generating desired patterns with multiple spikes. The trained neuron in ReSuMe can fire at desired times in response to spatio-temporal inputs. We propose alternative architecture for ReSuMe dealing with heterogeneous synapses. It is demonstrated that the proposed topology exactly mimic the ReSuMe. A novel extension of ReSuMe, called DelReSuMe, has better accuracy using less iteration by using multi-delay plasticity in addition to weight learning under noiseless and noisy conditions. The proposed heterogeneous topology is also used for DelReSuMe.Another plasticity extension based on STDP takes into account reward to modulate synaptic strength named R-STDP. We use dopamine-inspired STDP in SNNs to demonstrate improvements in mapping spatio-temporal patterns of spike trains with the multi-delay mechanism versus single connection. From the viewpoint of Machine Learning, Reinforcement Learning is outlined through a maze task in order to investigate the mechanisms of reward and eligibility trace which are the fundamental in R-STDP. To develop the approach we implement Temporal-Difference learning and novel knowledge-based RL techniques on the maze task. We develop rule extractions which are combined with RL and wall follower algorithms. We demonstrate the improvements on the exploration efficiency of TD learning for maze navigation tasks." @default.
- W2902263439 created "2018-12-11" @default.
- W2902263439 creator A5049785835 @default.
- W2902263439 date "2017-04-28" @default.
- W2902263439 modified "2023-09-27" @default.
- W2902263439 title "Learning spatio-temporal spike train encodings with ReSuMe, DelReSuMe, and Reward-modulated Spike-timing Dependent Plasticity in Spiking Neural Networks" @default.
- W2902263439 hasPublicationYear "2017" @default.
- W2902263439 type Work @default.
- W2902263439 sameAs 2902263439 @default.
- W2902263439 citedByCount "0" @default.
- W2902263439 crossrefType "dissertation" @default.
- W2902263439 hasAuthorship W2902263439A5049785835 @default.
- W2902263439 hasConcept C115903868 @default.
- W2902263439 hasConcept C11731999 @default.
- W2902263439 hasConcept C119857082 @default.
- W2902263439 hasConcept C138885662 @default.
- W2902263439 hasConcept C154945302 @default.
- W2902263439 hasConcept C159919123 @default.
- W2902263439 hasConcept C170493617 @default.
- W2902263439 hasConcept C185592680 @default.
- W2902263439 hasConcept C2781390188 @default.
- W2902263439 hasConcept C41008148 @default.
- W2902263439 hasConcept C41895202 @default.
- W2902263439 hasConcept C50644808 @default.
- W2902263439 hasConcept C55493867 @default.
- W2902263439 hasConcept C75291252 @default.
- W2902263439 hasConcept C97541855 @default.
- W2902263439 hasConcept C98229152 @default.
- W2902263439 hasConceptScore W2902263439C115903868 @default.
- W2902263439 hasConceptScore W2902263439C11731999 @default.
- W2902263439 hasConceptScore W2902263439C119857082 @default.
- W2902263439 hasConceptScore W2902263439C138885662 @default.
- W2902263439 hasConceptScore W2902263439C154945302 @default.
- W2902263439 hasConceptScore W2902263439C159919123 @default.
- W2902263439 hasConceptScore W2902263439C170493617 @default.
- W2902263439 hasConceptScore W2902263439C185592680 @default.
- W2902263439 hasConceptScore W2902263439C2781390188 @default.
- W2902263439 hasConceptScore W2902263439C41008148 @default.
- W2902263439 hasConceptScore W2902263439C41895202 @default.
- W2902263439 hasConceptScore W2902263439C50644808 @default.
- W2902263439 hasConceptScore W2902263439C55493867 @default.
- W2902263439 hasConceptScore W2902263439C75291252 @default.
- W2902263439 hasConceptScore W2902263439C97541855 @default.
- W2902263439 hasConceptScore W2902263439C98229152 @default.
- W2902263439 hasLocation W29022634391 @default.
- W2902263439 hasOpenAccess W2902263439 @default.
- W2902263439 hasPrimaryLocation W29022634391 @default.
- W2902263439 hasRelatedWork W175538653 @default.
- W2902263439 hasRelatedWork W1990435626 @default.
- W2902263439 hasRelatedWork W2038932821 @default.
- W2902263439 hasRelatedWork W2064480726 @default.
- W2902263439 hasRelatedWork W2096699255 @default.
- W2902263439 hasRelatedWork W2103132521 @default.
- W2902263439 hasRelatedWork W2107931919 @default.
- W2902263439 hasRelatedWork W2122290631 @default.
- W2902263439 hasRelatedWork W2138214290 @default.
- W2902263439 hasRelatedWork W2605366333 @default.
- W2902263439 hasRelatedWork W2700595004 @default.
- W2902263439 hasRelatedWork W2789667046 @default.
- W2902263439 hasRelatedWork W2808518417 @default.
- W2902263439 hasRelatedWork W2964185124 @default.
- W2902263439 hasRelatedWork W3038952900 @default.
- W2902263439 hasRelatedWork W3046216035 @default.
- W2902263439 hasRelatedWork W3082693481 @default.
- W2902263439 hasRelatedWork W309270361 @default.
- W2902263439 hasRelatedWork W3168657919 @default.
- W2902263439 hasRelatedWork W3212430360 @default.
- W2902263439 isParatext "false" @default.
- W2902263439 isRetracted "false" @default.
- W2902263439 magId "2902263439" @default.
- W2902263439 workType "dissertation" @default.