Matches in SemOpenAlex for { <https://semopenalex.org/work/W2902287568> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2902287568 abstract "The study of local and global instability and bifurcation phenomena is crucial for many engineering applications in the field of solid mechanics.In particular, interfaces within solid bodies are of great importance in the bifurcation analysis, as they constitute localized zones in which discontinuities or jumps in displacement, strain or stress may occur. Different instability phenomena, heavily conditioned by the presence of interfaces, were analyzed in the present thesis.The first phenomenon that has been considered is the propagation of a shear band, which is a localized shear deformation developing in a ductile material. This shear band, assumed to be already present inside of a ductilematrix material (obeying von Mises plasticity with linear hardening), is modelled as a discontinuity interface following two different approaches.In the first approach, the conditions describing the behavior of a layer of material in which localized strain develop are introduced and implemented in a finite element computer code. A shear deformation is simulated by imposing appropriate displacement conditions on the boundaries of the matrix material, in which the shear band is present and modelled through an imperfect interface, having null thickness.The second approach is based on a perturbative technique, developed for a J2-deformation theory material, in which the shear band is modeled as the emergence of a discontinuity surface for displacements at a certain stage of a uniform deformation process, restricted to plane strain conditions.Both the approaches concur in showing that shear bands (differently from cracks) propagate rectilinearly under shear loading and that a strong stress concentration is expected to be present at the tip of the shear band, two key features in the understanding of failure mechanisms of ductile materials [results of this study have been reported in (Bordignon et al. 2015)].The second type of interface analyzed in the present thesis is a perfectly frictionless sliding interface, subject to large deformations and assumed to be present within a uniformly strained nonlinear elastic solid. This type of interface may model lubricated sliding contact between soft solids, a topic of interest in biomechanics and for the design of small-scale engineering devices.The analyzed problem is posed as follows. Two elastic nonlinear solids are considered jointed through a frictionless and bilateral surface, so that continuity of the normal component of the Cauchy traction holds across the surface, but the tangential component is null. Moreover, the displacement can develop only in a way that the bodies in contact do neither detach, nor overlap. Surprisingly, this finite strain problem has not been correctly formulated until now, so that this formulation has been developed in the thesis. The incremental equations are shown to be non-trivial and different from previously (and erroneously) employed conditions. In particular, an exclusion condition for bifurcation is derived to show that previous formulations based on frictionless contact or ‘spring-type’ interfacial conditions are not able to predict bifurcations in tension, while experiments (one of which, ad hoc designed, is reported) show that these bifurcations are a reality and can be predicted when the correct sliding interface model is used. Therefore, the presented approach introduces a methodology for the determination of bifurcations and instabilities occurring during lubricated sliding between soft bodies in contact [results of this study have been reported in (Bigoni et al. 2018)]." @default.
- W2902287568 created "2018-12-11" @default.
- W2902287568 creator A5024857352 @default.
- W2902287568 date "2018-04-10" @default.
- W2902287568 modified "2023-09-26" @default.
- W2902287568 title "Bifurcations and instability in non-linear elastic solids with interfaces" @default.
- W2902287568 hasPublicationYear "2018" @default.
- W2902287568 type Work @default.
- W2902287568 sameAs 2902287568 @default.
- W2902287568 citedByCount "0" @default.
- W2902287568 crossrefType "dissertation" @default.
- W2902287568 hasAuthorship W2902287568A5024857352 @default.
- W2902287568 hasConcept C101082671 @default.
- W2902287568 hasConcept C121332964 @default.
- W2902287568 hasConcept C127413603 @default.
- W2902287568 hasConcept C134306372 @default.
- W2902287568 hasConcept C135628077 @default.
- W2902287568 hasConcept C15627037 @default.
- W2902287568 hasConcept C158622935 @default.
- W2902287568 hasConcept C159985019 @default.
- W2902287568 hasConcept C192562407 @default.
- W2902287568 hasConcept C207821765 @default.
- W2902287568 hasConcept C21141959 @default.
- W2902287568 hasConcept C2777042112 @default.
- W2902287568 hasConcept C2778956892 @default.
- W2902287568 hasConcept C2781349735 @default.
- W2902287568 hasConcept C29320194 @default.
- W2902287568 hasConcept C29660869 @default.
- W2902287568 hasConcept C33923547 @default.
- W2902287568 hasConcept C57879066 @default.
- W2902287568 hasConcept C62520636 @default.
- W2902287568 hasConcept C66938386 @default.
- W2902287568 hasConcept C74650414 @default.
- W2902287568 hasConcept C79186407 @default.
- W2902287568 hasConcept C96035792 @default.
- W2902287568 hasConceptScore W2902287568C101082671 @default.
- W2902287568 hasConceptScore W2902287568C121332964 @default.
- W2902287568 hasConceptScore W2902287568C127413603 @default.
- W2902287568 hasConceptScore W2902287568C134306372 @default.
- W2902287568 hasConceptScore W2902287568C135628077 @default.
- W2902287568 hasConceptScore W2902287568C15627037 @default.
- W2902287568 hasConceptScore W2902287568C158622935 @default.
- W2902287568 hasConceptScore W2902287568C159985019 @default.
- W2902287568 hasConceptScore W2902287568C192562407 @default.
- W2902287568 hasConceptScore W2902287568C207821765 @default.
- W2902287568 hasConceptScore W2902287568C21141959 @default.
- W2902287568 hasConceptScore W2902287568C2777042112 @default.
- W2902287568 hasConceptScore W2902287568C2778956892 @default.
- W2902287568 hasConceptScore W2902287568C2781349735 @default.
- W2902287568 hasConceptScore W2902287568C29320194 @default.
- W2902287568 hasConceptScore W2902287568C29660869 @default.
- W2902287568 hasConceptScore W2902287568C33923547 @default.
- W2902287568 hasConceptScore W2902287568C57879066 @default.
- W2902287568 hasConceptScore W2902287568C62520636 @default.
- W2902287568 hasConceptScore W2902287568C66938386 @default.
- W2902287568 hasConceptScore W2902287568C74650414 @default.
- W2902287568 hasConceptScore W2902287568C79186407 @default.
- W2902287568 hasConceptScore W2902287568C96035792 @default.
- W2902287568 hasLocation W29022875681 @default.
- W2902287568 hasOpenAccess W2902287568 @default.
- W2902287568 hasPrimaryLocation W29022875681 @default.
- W2902287568 hasRelatedWork W104723627 @default.
- W2902287568 hasRelatedWork W131542301 @default.
- W2902287568 hasRelatedWork W1493713218 @default.
- W2902287568 hasRelatedWork W1996689853 @default.
- W2902287568 hasRelatedWork W2014442448 @default.
- W2902287568 hasRelatedWork W2014611210 @default.
- W2902287568 hasRelatedWork W2114315208 @default.
- W2902287568 hasRelatedWork W2114337855 @default.
- W2902287568 hasRelatedWork W2153661041 @default.
- W2902287568 hasRelatedWork W2227948137 @default.
- W2902287568 hasRelatedWork W2523073288 @default.
- W2902287568 hasRelatedWork W2891854540 @default.
- W2902287568 hasRelatedWork W3000010010 @default.
- W2902287568 hasRelatedWork W3160015214 @default.
- W2902287568 hasRelatedWork W72035831 @default.
- W2902287568 hasRelatedWork W1834777708 @default.
- W2902287568 hasRelatedWork W215453253 @default.
- W2902287568 hasRelatedWork W2183815581 @default.
- W2902287568 hasRelatedWork W2619298289 @default.
- W2902287568 hasRelatedWork W326454007 @default.
- W2902287568 isParatext "false" @default.
- W2902287568 isRetracted "false" @default.
- W2902287568 magId "2902287568" @default.
- W2902287568 workType "dissertation" @default.