Matches in SemOpenAlex for { <https://semopenalex.org/work/W2902383671> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2902383671 endingPage "2313" @default.
- W2902383671 startingPage "2296" @default.
- W2902383671 abstract "Adaptation and learning over low-cost wireless networks, meanwhile keeping an acceptable performance, are well motivated. This paper focuses on online parameter estimation over binary networks, which consist of noisy low-resolution sensors, each only giving coarsely one-bit quantized output observations and transmitting them to a fusion center. We develop a class of recursive least-squares (RLS) algorithms based on an expectation–maximization framework, which realizes adaptive parameter estimation from one-bit observations of the noisy output stream. The developed algorithms are, respectively, derived with and without prior knowledge of the noise variances, and their performances are theoretically and experimentally evaluated. Moreover, it is shown that, although the information contained in the one-bit observations is very limited, the proposed algorithms are comparable to the classical RLS algorithm using the original (nonquantized) observations. In addition, as a practical application, the proposed algorithm combined with array signal processing techniques is applied to bearing-only target localization over wireless sensor array networks, and its effectiveness is verified through simulation experiments." @default.
- W2902383671 created "2018-12-11" @default.
- W2902383671 creator A5027039492 @default.
- W2902383671 creator A5066585954 @default.
- W2902383671 creator A5074436126 @default.
- W2902383671 date "2019-10-01" @default.
- W2902383671 modified "2023-10-17" @default.
- W2902383671 title "One-Bit Recursive Least-Squares Algorithm With Application to Distributed Target Localization" @default.
- W2902383671 cites W1539719269 @default.
- W2902383671 cites W1605194072 @default.
- W2902383671 cites W1988410365 @default.
- W2902383671 cites W2001359910 @default.
- W2902383671 cites W2004385997 @default.
- W2902383671 cites W2007137388 @default.
- W2902383671 cites W2008457674 @default.
- W2902383671 cites W2031249428 @default.
- W2902383671 cites W2033332370 @default.
- W2902383671 cites W2033787551 @default.
- W2902383671 cites W2033853003 @default.
- W2902383671 cites W2043353939 @default.
- W2902383671 cites W2052179119 @default.
- W2902383671 cites W2068651508 @default.
- W2902383671 cites W2073148077 @default.
- W2902383671 cites W2081540728 @default.
- W2902383671 cites W2101847234 @default.
- W2902383671 cites W2102538920 @default.
- W2902383671 cites W2103224864 @default.
- W2902383671 cites W2107568926 @default.
- W2902383671 cites W2112569767 @default.
- W2902383671 cites W2113085878 @default.
- W2902383671 cites W2116853048 @default.
- W2902383671 cites W2127404499 @default.
- W2902383671 cites W2130157538 @default.
- W2902383671 cites W2130556364 @default.
- W2902383671 cites W2131091570 @default.
- W2902383671 cites W2134992817 @default.
- W2902383671 cites W2135806093 @default.
- W2902383671 cites W2138319443 @default.
- W2902383671 cites W2139096324 @default.
- W2902383671 cites W2143957734 @default.
- W2902383671 cites W2149755721 @default.
- W2902383671 cites W2156886933 @default.
- W2902383671 cites W2294622949 @default.
- W2902383671 cites W2315887526 @default.
- W2902383671 cites W2415976609 @default.
- W2902383671 cites W2562582361 @default.
- W2902383671 cites W2565123847 @default.
- W2902383671 cites W2572349158 @default.
- W2902383671 cites W2962919833 @default.
- W2902383671 cites W2963469257 @default.
- W2902383671 cites W2963879045 @default.
- W2902383671 cites W2964200481 @default.
- W2902383671 cites W2964322027 @default.
- W2902383671 cites W3099909623 @default.
- W2902383671 cites W4239240501 @default.
- W2902383671 doi "https://doi.org/10.1109/taes.2018.2884805" @default.
- W2902383671 hasPublicationYear "2019" @default.
- W2902383671 type Work @default.
- W2902383671 sameAs 2902383671 @default.
- W2902383671 citedByCount "2" @default.
- W2902383671 countsByYear W29023836712019 @default.
- W2902383671 countsByYear W29023836712022 @default.
- W2902383671 crossrefType "journal-article" @default.
- W2902383671 hasAuthorship W2902383671A5027039492 @default.
- W2902383671 hasAuthorship W2902383671A5066585954 @default.
- W2902383671 hasAuthorship W2902383671A5074436126 @default.
- W2902383671 hasConcept C11413529 @default.
- W2902383671 hasConcept C117011727 @default.
- W2902383671 hasConcept C38652104 @default.
- W2902383671 hasConcept C41008148 @default.
- W2902383671 hasConceptScore W2902383671C11413529 @default.
- W2902383671 hasConceptScore W2902383671C117011727 @default.
- W2902383671 hasConceptScore W2902383671C38652104 @default.
- W2902383671 hasConceptScore W2902383671C41008148 @default.
- W2902383671 hasFunder F4320321001 @default.
- W2902383671 hasFunder F4320338464 @default.
- W2902383671 hasIssue "5" @default.
- W2902383671 hasLocation W29023836711 @default.
- W2902383671 hasOpenAccess W2902383671 @default.
- W2902383671 hasPrimaryLocation W29023836711 @default.
- W2902383671 hasRelatedWork W2351491280 @default.
- W2902383671 hasRelatedWork W2355489963 @default.
- W2902383671 hasRelatedWork W2371447506 @default.
- W2902383671 hasRelatedWork W2386767533 @default.
- W2902383671 hasRelatedWork W303980170 @default.
- W2902383671 hasRelatedWork W4205523893 @default.
- W2902383671 hasRelatedWork W4238216420 @default.
- W2902383671 hasRelatedWork W4246522322 @default.
- W2902383671 hasRelatedWork W4248705640 @default.
- W2902383671 hasRelatedWork W4249640049 @default.
- W2902383671 hasVolume "55" @default.
- W2902383671 isParatext "false" @default.
- W2902383671 isRetracted "false" @default.
- W2902383671 magId "2902383671" @default.
- W2902383671 workType "article" @default.