Matches in SemOpenAlex for { <https://semopenalex.org/work/W2902406013> ?p ?o ?g. }
- W2902406013 endingPage "282" @default.
- W2902406013 startingPage "271" @default.
- W2902406013 abstract "Suspended growth, mixed community phototrophic wastewater treatment systems (including high-rate algal ponds and photobioreactors) have the potential to achieve biological nitrogen and phosphorus recovery with effluent nutrient concentrations below the current limit-of-technology. In order to achieve reliable and predictive performance, it is necessary to establish a thorough understanding of how design and operational decisions influence the complex community structure governing nutrient recovery in these systems. Solids residence time (SRT), a critical operational parameter governing growth rate, was leveraged as a selective pressure to shape microbial community structure in laboratory-scale photobioreactors fed secondary effluent from a local wastewater treatment plant. In order to decouple the effects of SRT and hydraulic retention time (HRT), nutrient loading was fixed across all experimental conditions and the effect of changing SRT on microbial community structure, diversity, and stability, as well as its impact on nutrient recovery, was characterized. Reactors were operated at distinct SRTs (5, 10, and 15 days) with diurnal lighting over long-term operation (>6 SRTs), and in-depth examination of the eukaryotic and bacterial community structure was performed using amplicon-based sequencing of the 18S and 16S rRNA genes, respectively. In order to better represent the microalgal community structure, this study leveraged improved 18S rRNA gene primers that have been shown to provide a more accurate representation of the wastewater process-relevant algal community members. Long-term operation resulted in distinct eukaryotic communities across SRTs, independent of the relative abundance of Operational Taxonomic Units (OTUs) in the inoculum. The longest SRT (15 days, SRT 15) resulted in a more stable algal community along with stable bacterial nitrification, while the shortest SRT (5 days, SRT 5) resulted in a less stable, more dynamic community. Although SRT was not strongly associated with overall bacterial diversity, the eukaryotic community of SRT 15 was significantly less diverse and less even than SRT 5, with a few dominant OTUs making up a majority of the eukaryotic community structure in the former. Overall, although longer SRTs promote stable bacterial nitrification, short SRTs promote higher eukaryotic diversity, increased functional stability, and better total N removal via biomass assimilation. These results indicate that SRT may be a key factor in not only controlling microalgal community membership, but community diversity and functional stability as well. Ultimately, the efficacy and reliability of NH4+ removal may be in tension with TN removal in mixed phototrophic systems given that lower SRTs may achieve better total N removal (via biomass assimilation) through increased eukaryotic diversity, biomass productivity, and functional stability." @default.
- W2902406013 created "2018-12-11" @default.
- W2902406013 creator A5001255806 @default.
- W2902406013 creator A5002067592 @default.
- W2902406013 creator A5015750909 @default.
- W2902406013 creator A5057501799 @default.
- W2902406013 date "2019-03-01" @default.
- W2902406013 modified "2023-10-14" @default.
- W2902406013 title "Impact of solids residence time on community structure and nutrient dynamics of mixed phototrophic wastewater treatment systems" @default.
- W2902406013 cites W1548428029 @default.
- W2902406013 cites W1599232010 @default.
- W2902406013 cites W1784376172 @default.
- W2902406013 cites W1967587277 @default.
- W2902406013 cites W1967682919 @default.
- W2902406013 cites W1970398698 @default.
- W2902406013 cites W1980151328 @default.
- W2902406013 cites W1981571906 @default.
- W2902406013 cites W1990135905 @default.
- W2902406013 cites W1991505402 @default.
- W2902406013 cites W1994029771 @default.
- W2902406013 cites W1996097928 @default.
- W2902406013 cites W1997759057 @default.
- W2902406013 cites W2010101759 @default.
- W2902406013 cites W2013778147 @default.
- W2902406013 cites W2018569256 @default.
- W2902406013 cites W2020062261 @default.
- W2902406013 cites W2020904657 @default.
- W2902406013 cites W2022101315 @default.
- W2902406013 cites W2024932006 @default.
- W2902406013 cites W2041832135 @default.
- W2902406013 cites W2051958848 @default.
- W2902406013 cites W2055043387 @default.
- W2902406013 cites W2055664091 @default.
- W2902406013 cites W2056474841 @default.
- W2902406013 cites W2058832781 @default.
- W2902406013 cites W2060313313 @default.
- W2902406013 cites W2075740579 @default.
- W2902406013 cites W2080224026 @default.
- W2902406013 cites W2088671540 @default.
- W2902406013 cites W2091950724 @default.
- W2902406013 cites W2093804394 @default.
- W2902406013 cites W2104078449 @default.
- W2902406013 cites W2105224249 @default.
- W2902406013 cites W2110765754 @default.
- W2902406013 cites W2112410077 @default.
- W2902406013 cites W2117457769 @default.
- W2902406013 cites W2125161543 @default.
- W2902406013 cites W2131895886 @default.
- W2902406013 cites W2146708200 @default.
- W2902406013 cites W2147042868 @default.
- W2902406013 cites W2159632384 @default.
- W2902406013 cites W2159795615 @default.
- W2902406013 cites W2160021859 @default.
- W2902406013 cites W2165715909 @default.
- W2902406013 cites W2175951962 @default.
- W2902406013 cites W2179653678 @default.
- W2902406013 cites W2191505017 @default.
- W2902406013 cites W2192052826 @default.
- W2902406013 cites W2219281295 @default.
- W2902406013 cites W2237716879 @default.
- W2902406013 cites W2273174960 @default.
- W2902406013 cites W2307281102 @default.
- W2902406013 cites W2323839566 @default.
- W2902406013 cites W2326421838 @default.
- W2902406013 cites W2469242925 @default.
- W2902406013 cites W2513506562 @default.
- W2902406013 cites W2519703804 @default.
- W2902406013 cites W2566911760 @default.
- W2902406013 cites W2580114213 @default.
- W2902406013 cites W2586448338 @default.
- W2902406013 cites W2594083712 @default.
- W2902406013 cites W2613226918 @default.
- W2902406013 cites W2616253878 @default.
- W2902406013 cites W2618818930 @default.
- W2902406013 cites W2746722856 @default.
- W2902406013 cites W2747182905 @default.
- W2902406013 cites W2791192703 @default.
- W2902406013 cites W2793492502 @default.
- W2902406013 cites W2794357969 @default.
- W2902406013 cites W2803510489 @default.
- W2902406013 doi "https://doi.org/10.1016/j.watres.2018.11.065" @default.
- W2902406013 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30529592" @default.
- W2902406013 hasPublicationYear "2019" @default.
- W2902406013 type Work @default.
- W2902406013 sameAs 2902406013 @default.
- W2902406013 citedByCount "24" @default.
- W2902406013 countsByYear W29024060132019 @default.
- W2902406013 countsByYear W29024060132020 @default.
- W2902406013 countsByYear W29024060132021 @default.
- W2902406013 countsByYear W29024060132022 @default.
- W2902406013 countsByYear W29024060132023 @default.
- W2902406013 crossrefType "journal-article" @default.
- W2902406013 hasAuthorship W2902406013A5001255806 @default.
- W2902406013 hasAuthorship W2902406013A5002067592 @default.
- W2902406013 hasAuthorship W2902406013A5015750909 @default.
- W2902406013 hasAuthorship W2902406013A5057501799 @default.
- W2902406013 hasBestOaLocation W29024060131 @default.
- W2902406013 hasConcept C115540264 @default.