Matches in SemOpenAlex for { <https://semopenalex.org/work/W2902479064> ?p ?o ?g. }
- W2902479064 endingPage "296" @default.
- W2902479064 startingPage "282" @default.
- W2902479064 abstract "Abstract Similar to feature selection over completely labeled data, the aim of feature selection over partially labeled data (semi-supervised feature selection) is also to find a feature subset which satisfies the intended constraint. Nevertheless, two difficulties may emerge in the semi-supervised feature selection: (1) labels are incomplete since labeled and unlabeled samples coexist in data; (2) the explanation of the selected feature subset is not clear. Therefore, such two problems will be mainly addressed in our research. Firstly, the unlabeled samples can be predicted through various semi-supervised learning methods. Secondly, the Local Neighborhood Decision Error Rate is proposed to construct multiple fitness functions for evaluating the significance of the candidate feature. Such mechanism not only realizes the ensemble selector in the process of feature selection, but also the qualified feature subset will bring us lower decision errors. Immediately, a heuristic algorithm is re-designed to execute feature selection. Finally, through testing nine different ratios (10%, 20%, … , 90%) of labeled samples in data, the experimental results demonstrate that our approach is superior to previous researches, mainly because: (1) the qualified feature subset derived by our approach can provide better classification performance; (2) the lower time consumption is required in our process of feature selection." @default.
- W2902479064 created "2018-12-11" @default.
- W2902479064 creator A5003922614 @default.
- W2902479064 creator A5013026116 @default.
- W2902479064 creator A5027967337 @default.
- W2902479064 creator A5030350248 @default.
- W2902479064 creator A5062619125 @default.
- W2902479064 creator A5076517472 @default.
- W2902479064 date "2019-02-01" @default.
- W2902479064 modified "2023-10-17" @default.
- W2902479064 title "Rough set based semi-supervised feature selection via ensemble selector" @default.
- W2902479064 cites W1169440139 @default.
- W2902479064 cites W1965927354 @default.
- W2902479064 cites W1978603136 @default.
- W2902479064 cites W1986611834 @default.
- W2902479064 cites W1986839581 @default.
- W2902479064 cites W1995293897 @default.
- W2902479064 cites W2004068299 @default.
- W2902479064 cites W2007810691 @default.
- W2902479064 cites W2010250014 @default.
- W2902479064 cites W2026122471 @default.
- W2902479064 cites W2036424610 @default.
- W2902479064 cites W2049157258 @default.
- W2902479064 cites W2052916917 @default.
- W2902479064 cites W2071255876 @default.
- W2902479064 cites W2083047046 @default.
- W2902479064 cites W2085443648 @default.
- W2902479064 cites W2090630554 @default.
- W2902479064 cites W2113890143 @default.
- W2902479064 cites W2122937613 @default.
- W2902479064 cites W2126185804 @default.
- W2902479064 cites W2143040521 @default.
- W2902479064 cites W2143451122 @default.
- W2902479064 cites W2153635508 @default.
- W2902479064 cites W2158633287 @default.
- W2902479064 cites W2160633256 @default.
- W2902479064 cites W2162364423 @default.
- W2902479064 cites W2169038408 @default.
- W2902479064 cites W2261233885 @default.
- W2902479064 cites W2292553612 @default.
- W2902479064 cites W2304692780 @default.
- W2902479064 cites W2343038205 @default.
- W2902479064 cites W2466939964 @default.
- W2902479064 cites W2501549495 @default.
- W2902479064 cites W2511098035 @default.
- W2902479064 cites W2550999023 @default.
- W2902479064 cites W2553107651 @default.
- W2902479064 cites W2561208659 @default.
- W2902479064 cites W2564523067 @default.
- W2902479064 cites W2588572297 @default.
- W2902479064 cites W2594524198 @default.
- W2902479064 cites W2626395746 @default.
- W2902479064 cites W2737801118 @default.
- W2902479064 cites W2746791238 @default.
- W2902479064 cites W2747214438 @default.
- W2902479064 cites W2765369538 @default.
- W2902479064 cites W2767278854 @default.
- W2902479064 cites W2777325753 @default.
- W2902479064 cites W2803519183 @default.
- W2902479064 cites W2912707296 @default.
- W2902479064 cites W4255833381 @default.
- W2902479064 doi "https://doi.org/10.1016/j.knosys.2018.11.034" @default.
- W2902479064 hasPublicationYear "2019" @default.
- W2902479064 type Work @default.
- W2902479064 sameAs 2902479064 @default.
- W2902479064 citedByCount "92" @default.
- W2902479064 countsByYear W29024790642018 @default.
- W2902479064 countsByYear W29024790642019 @default.
- W2902479064 countsByYear W29024790642020 @default.
- W2902479064 countsByYear W29024790642021 @default.
- W2902479064 countsByYear W29024790642022 @default.
- W2902479064 countsByYear W29024790642023 @default.
- W2902479064 crossrefType "journal-article" @default.
- W2902479064 hasAuthorship W2902479064A5003922614 @default.
- W2902479064 hasAuthorship W2902479064A5013026116 @default.
- W2902479064 hasAuthorship W2902479064A5027967337 @default.
- W2902479064 hasAuthorship W2902479064A5030350248 @default.
- W2902479064 hasAuthorship W2902479064A5062619125 @default.
- W2902479064 hasAuthorship W2902479064A5076517472 @default.
- W2902479064 hasConcept C111012933 @default.
- W2902479064 hasConcept C119857082 @default.
- W2902479064 hasConcept C124101348 @default.
- W2902479064 hasConcept C138885662 @default.
- W2902479064 hasConcept C148483581 @default.
- W2902479064 hasConcept C153180895 @default.
- W2902479064 hasConcept C154945302 @default.
- W2902479064 hasConcept C177264268 @default.
- W2902479064 hasConcept C199360897 @default.
- W2902479064 hasConcept C2776401178 @default.
- W2902479064 hasConcept C41008148 @default.
- W2902479064 hasConcept C41895202 @default.
- W2902479064 hasConcept C81917197 @default.
- W2902479064 hasConceptScore W2902479064C111012933 @default.
- W2902479064 hasConceptScore W2902479064C119857082 @default.
- W2902479064 hasConceptScore W2902479064C124101348 @default.
- W2902479064 hasConceptScore W2902479064C138885662 @default.
- W2902479064 hasConceptScore W2902479064C148483581 @default.
- W2902479064 hasConceptScore W2902479064C153180895 @default.