Matches in SemOpenAlex for { <https://semopenalex.org/work/W2902493299> ?p ?o ?g. }
- W2902493299 endingPage "228" @default.
- W2902493299 startingPage "215" @default.
- W2902493299 abstract "The development of post-Hartree-Fock (post-HF) energy decomposition schemes that are able to decompose the HF and correlation components of the interaction energy into chemically meaningful contributions is a very active field of research. One of the challenges is to provide a clear-cut quantification to the elusive London dispersion component of the intermolecular interaction. London dispersion is well-known to be a pure correlation effect, and as such it is not properly described by mean field theories. In this context, we have recently developed the local energy decomposition (LED) analysis, which provides a chemically meaningful decomposition of the interaction energy between two or more fragments computed at the domain-based local pair natural orbitals coupled cluster (DLPNO-CCSD(T)) level of theory. In this work, this scheme is used in conjunction with other interpretation tools to study a series of molecular adducts held together by intermolecular interactions of different natures. The HF and correlation components of the interaction energy are thus decomposed into a series of chemically meaningful contributions. Emphasis is placed on discussing the physical effects associated with the inclusion of electron correlation. It is found that four distinct physical effects can contribute to the magnitude of the correlation part of intermolecular binding energies (Δ EintC): (i) London dispersion, (ii) the correlation correction to the reference induction energy, (iii) the correlation correction to the electron sharing process, and (iv) the correlation correction to the permanent electrostatics. As expected, the largest contribution to the correlation binding energy of neutral, apolar molecules is London dispersion, as in the argon dimer case. In contrast, the correction for the HF induction energy dominates Δ EintC in systems in which an apolar molecule interacts with charged or strongly polar species, as in Ar-Li+. This effect has its origin in the systematic underestimation of polarizabilities at the HF level of theory. For similar reasons, electron sharing largely contributes to the correlation binding energy of covalently bound molecules, as in the beryllium dimer case. Finally, the correction for HF permanent electrostatics significantly contributes to Δ EintC in molecules with strong dipoles, such as water and hydrogen fluoride dimers. This effect originates from the characteristic overestimation of dipole moments at the HF level of theory, leading in some cases to positive Δ EintC values. Our results are apparently in contrast to the widely accepted view that Δ EintC is typically dominated by London dispersion, at least, in the strongly interacting region. Clearly, post-HF energy decomposition schemes are very powerful tools to analyze, categorize, and understand the various contributions to the intermolecular interaction energy. Hopefully, this will eventually lead to insights that are helpful in designing systems with tailored properties. All analysis tools presented in this work will be available free of charge in the next release of the ORCA program package." @default.
- W2902493299 created "2018-12-11" @default.
- W2902493299 creator A5015247396 @default.
- W2902493299 creator A5030726501 @default.
- W2902493299 creator A5046820685 @default.
- W2902493299 date "2018-11-29" @default.
- W2902493299 modified "2023-10-03" @default.
- W2902493299 title "Effect of Electron Correlation on Intermolecular Interactions: A Pair Natural Orbitals Coupled Cluster Based Local Energy Decomposition Study" @default.
- W2902493299 cites W1650699668 @default.
- W2902493299 cites W1966492024 @default.
- W2902493299 cites W1970900112 @default.
- W2902493299 cites W1971063822 @default.
- W2902493299 cites W1972288130 @default.
- W2902493299 cites W1976774792 @default.
- W2902493299 cites W1976952687 @default.
- W2902493299 cites W1977729176 @default.
- W2902493299 cites W1988278031 @default.
- W2902493299 cites W1996322649 @default.
- W2902493299 cites W1998613997 @default.
- W2902493299 cites W1999903435 @default.
- W2902493299 cites W2000380304 @default.
- W2902493299 cites W2001758548 @default.
- W2902493299 cites W2010154212 @default.
- W2902493299 cites W2012099005 @default.
- W2902493299 cites W2016219317 @default.
- W2902493299 cites W2016861654 @default.
- W2902493299 cites W2018674598 @default.
- W2902493299 cites W2023583813 @default.
- W2902493299 cites W2025759763 @default.
- W2902493299 cites W2026090322 @default.
- W2902493299 cites W2030756373 @default.
- W2902493299 cites W2034734239 @default.
- W2902493299 cites W2036516589 @default.
- W2902493299 cites W2040134477 @default.
- W2902493299 cites W2043932978 @default.
- W2902493299 cites W2044981109 @default.
- W2902493299 cites W2045912147 @default.
- W2902493299 cites W2046604198 @default.
- W2902493299 cites W2046679184 @default.
- W2902493299 cites W2052563045 @default.
- W2902493299 cites W2052842895 @default.
- W2902493299 cites W2053030571 @default.
- W2902493299 cites W2053312464 @default.
- W2902493299 cites W2055975105 @default.
- W2902493299 cites W2056140921 @default.
- W2902493299 cites W2057240944 @default.
- W2902493299 cites W2060256583 @default.
- W2902493299 cites W2067718414 @default.
- W2902493299 cites W2068036936 @default.
- W2902493299 cites W2069006374 @default.
- W2902493299 cites W2078511427 @default.
- W2902493299 cites W2082037815 @default.
- W2902493299 cites W2086598671 @default.
- W2902493299 cites W2087864238 @default.
- W2902493299 cites W2091208014 @default.
- W2902493299 cites W2093613816 @default.
- W2902493299 cites W2097574296 @default.
- W2902493299 cites W2100122241 @default.
- W2902493299 cites W2112771953 @default.
- W2902493299 cites W2130918438 @default.
- W2902493299 cites W2145065557 @default.
- W2902493299 cites W2170676330 @default.
- W2902493299 cites W2234552091 @default.
- W2902493299 cites W2238731406 @default.
- W2902493299 cites W2292524475 @default.
- W2902493299 cites W2314793716 @default.
- W2902493299 cites W2315283252 @default.
- W2902493299 cites W2316828822 @default.
- W2902493299 cites W2323218728 @default.
- W2902493299 cites W2328281178 @default.
- W2902493299 cites W2328796876 @default.
- W2902493299 cites W2335150046 @default.
- W2902493299 cites W2511953666 @default.
- W2902493299 cites W2515021821 @default.
- W2902493299 cites W2516351507 @default.
- W2902493299 cites W2518954999 @default.
- W2902493299 cites W2535682582 @default.
- W2902493299 cites W2548579624 @default.
- W2902493299 cites W2577787397 @default.
- W2902493299 cites W2599051575 @default.
- W2902493299 cites W2612387035 @default.
- W2902493299 cites W2612985015 @default.
- W2902493299 cites W2739439285 @default.
- W2902493299 cites W2763121279 @default.
- W2902493299 cites W2767155791 @default.
- W2902493299 cites W2791612975 @default.
- W2902493299 cites W2795978639 @default.
- W2902493299 cites W2800094878 @default.
- W2902493299 cites W2802141264 @default.
- W2902493299 cites W2950104263 @default.
- W2902493299 cites W4247095671 @default.
- W2902493299 cites W4255389013 @default.
- W2902493299 doi "https://doi.org/10.1021/acs.jctc.8b00915" @default.
- W2902493299 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30495957" @default.
- W2902493299 hasPublicationYear "2018" @default.
- W2902493299 type Work @default.
- W2902493299 sameAs 2902493299 @default.
- W2902493299 citedByCount "78" @default.