Matches in SemOpenAlex for { <https://semopenalex.org/work/W2902527468> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2902527468 endingPage "13" @default.
- W2902527468 startingPage "1" @default.
- W2902527468 abstract "As one of the most prevalent cancers among women worldwide, breast cancer has attracted the most attention by researchers. It has been verified that an accurate and early detection of breast cancer can increase the chances for the patients to take the right treatment plan and survive for a long time. Nowadays, numerous classification methods have been utilized for breast cancer diagnosis. However, most of these classification models have concentrated on maximum the classification accuracy, failed to take into account the unequal misclassification costs for the breast cancer diagnosis. To the best of our knowledge, misclassifying the cancerous patient as non-cancerous has much higher cost compared to misclassifying the non-cancerous as cancerous. Consequently, in order to tackle this deficiency and further improve the classification accuracy of the breast cancer diagnosis, we propose an improved cost-sensitive support vector machine classifier (ICS-SVM) for the diagnosis of breast cancer. In the proposed approach, we take full account of unequal misclassification costs of breast cancer intelligent diagnosis and provide more reasonable results over previous works and conventional classification models. To evaluate the performance of the proposed approach, Wisconsin Breast Cancer (WBC) and Wisconsin Diagnostic Breast Cancer (WDBC) breast cancer datasets obtained from the University of California at Irvine (UCI) machine learning repository have been studied. The experimental results demonstrate that the proposed hybrid algorithm outperforms all the existing methods. Promisingly, the proposed method can be regarded as a useful clinical tool for breast cancer diagnosis and could also be applied to other illness diagnosis." @default.
- W2902527468 created "2018-12-11" @default.
- W2902527468 creator A5000196261 @default.
- W2902527468 creator A5004888385 @default.
- W2902527468 creator A5011615038 @default.
- W2902527468 creator A5019336492 @default.
- W2902527468 creator A5036964238 @default.
- W2902527468 creator A5073804118 @default.
- W2902527468 date "2018-11-28" @default.
- W2902527468 modified "2023-09-28" @default.
- W2902527468 title "Improved Cost-Sensitive Support Vector Machine Classifier for Breast Cancer Diagnosis" @default.
- W2902527468 cites W1833977909 @default.
- W2902527468 cites W1966217482 @default.
- W2902527468 cites W1976070030 @default.
- W2902527468 cites W1985842955 @default.
- W2902527468 cites W2004320486 @default.
- W2902527468 cites W2012073623 @default.
- W2902527468 cites W2038567802 @default.
- W2902527468 cites W2063910191 @default.
- W2902527468 cites W2068833644 @default.
- W2902527468 cites W2069914810 @default.
- W2902527468 cites W2071529495 @default.
- W2902527468 cites W2080082849 @default.
- W2902527468 cites W2083296039 @default.
- W2902527468 cites W2089927030 @default.
- W2902527468 cites W2124611117 @default.
- W2902527468 cites W2143305386 @default.
- W2902527468 cites W2149298154 @default.
- W2902527468 cites W2153635508 @default.
- W2902527468 cites W2162223169 @default.
- W2902527468 cites W2173314530 @default.
- W2902527468 cites W226699106 @default.
- W2902527468 cites W2384341180 @default.
- W2902527468 cites W2472741927 @default.
- W2902527468 cites W2476370993 @default.
- W2902527468 cites W2586610908 @default.
- W2902527468 cites W2593914038 @default.
- W2902527468 cites W2743635406 @default.
- W2902527468 cites W2773381949 @default.
- W2902527468 cites W2810180393 @default.
- W2902527468 cites W997752780 @default.
- W2902527468 doi "https://doi.org/10.1155/2018/3875082" @default.
- W2902527468 hasPublicationYear "2018" @default.
- W2902527468 type Work @default.
- W2902527468 sameAs 2902527468 @default.
- W2902527468 citedByCount "21" @default.
- W2902527468 countsByYear W29025274682019 @default.
- W2902527468 countsByYear W29025274682020 @default.
- W2902527468 countsByYear W29025274682021 @default.
- W2902527468 countsByYear W29025274682022 @default.
- W2902527468 countsByYear W29025274682023 @default.
- W2902527468 crossrefType "journal-article" @default.
- W2902527468 hasAuthorship W2902527468A5000196261 @default.
- W2902527468 hasAuthorship W2902527468A5004888385 @default.
- W2902527468 hasAuthorship W2902527468A5011615038 @default.
- W2902527468 hasAuthorship W2902527468A5019336492 @default.
- W2902527468 hasAuthorship W2902527468A5036964238 @default.
- W2902527468 hasAuthorship W2902527468A5073804118 @default.
- W2902527468 hasBestOaLocation W29025274681 @default.
- W2902527468 hasConcept C119857082 @default.
- W2902527468 hasConcept C121608353 @default.
- W2902527468 hasConcept C12267149 @default.
- W2902527468 hasConcept C126322002 @default.
- W2902527468 hasConcept C154945302 @default.
- W2902527468 hasConcept C41008148 @default.
- W2902527468 hasConcept C530470458 @default.
- W2902527468 hasConcept C71924100 @default.
- W2902527468 hasConcept C95623464 @default.
- W2902527468 hasConceptScore W2902527468C119857082 @default.
- W2902527468 hasConceptScore W2902527468C121608353 @default.
- W2902527468 hasConceptScore W2902527468C12267149 @default.
- W2902527468 hasConceptScore W2902527468C126322002 @default.
- W2902527468 hasConceptScore W2902527468C154945302 @default.
- W2902527468 hasConceptScore W2902527468C41008148 @default.
- W2902527468 hasConceptScore W2902527468C530470458 @default.
- W2902527468 hasConceptScore W2902527468C71924100 @default.
- W2902527468 hasConceptScore W2902527468C95623464 @default.
- W2902527468 hasFunder F4320321001 @default.
- W2902527468 hasLocation W29025274681 @default.
- W2902527468 hasOpenAccess W2902527468 @default.
- W2902527468 hasPrimaryLocation W29025274681 @default.
- W2902527468 hasRelatedWork W1996541855 @default.
- W2902527468 hasRelatedWork W2355927362 @default.
- W2902527468 hasRelatedWork W2556319748 @default.
- W2902527468 hasRelatedWork W2748952813 @default.
- W2902527468 hasRelatedWork W2899084033 @default.
- W2902527468 hasRelatedWork W2961085424 @default.
- W2902527468 hasRelatedWork W3195168932 @default.
- W2902527468 hasRelatedWork W3200179079 @default.
- W2902527468 hasRelatedWork W4306674287 @default.
- W2902527468 hasRelatedWork W4224009465 @default.
- W2902527468 hasVolume "2018" @default.
- W2902527468 isParatext "false" @default.
- W2902527468 isRetracted "false" @default.
- W2902527468 magId "2902527468" @default.
- W2902527468 workType "article" @default.