Matches in SemOpenAlex for { <https://semopenalex.org/work/W2902537404> ?p ?o ?g. }
- W2902537404 endingPage "758" @default.
- W2902537404 startingPage "758" @default.
- W2902537404 abstract "Wall-to-wall tree-lists information (lists of species and diameter for every tree) at a regional scale is required for managers to assess forest sustainability and design effective forest management strategies. Currently, the k-nearest neighbors (kNN) method and the Weibull diameter distribution function have been widely used for estimating tree lists. However, the kNN method usually relies on a large number of field inventory plots to impute tree lists, whereas the Weibull function relies on strong correlations between stand attributes and diameter distribution across large regions. In this study, we developed a framework to estimate wall-to-wall tree lists over large areas based on a limited number of forest inventory plots. This framework integrates the ability of extrapolating diameter distribution from Weibull and kNN imputation of wall-to-wall forest stand attributes from Moderate Resolution Imaging Spectroradiometer (MODIS). We estimated tree lists using this framework in Chinese boreal forests (Great Xing’an Mountains) and evaluated the accuracy of this framework. The results showed that the passing rate of the Kolmogorov–Smirnov (KS) test for Weibull diameter distribution by species was from 52% to 88.16%, which means that Weibull distribution could describe the diameter distribution by species well. The imputed stand attributes (diameter at breast height (DBH), height, and age) from the kNN method showed comparable accuracy with the previous studies for all species. There was no significant difference in the tree density between the estimated and observed tree-lists. Results suggest that this framework is well-suited to estimating the tree-lists in a large area. Our results were also ecologically realistic, capturing dominant ecological patterns and processes." @default.
- W2902537404 created "2018-12-11" @default.
- W2902537404 creator A5025323495 @default.
- W2902537404 creator A5040518241 @default.
- W2902537404 creator A5075810767 @default.
- W2902537404 date "2018-12-05" @default.
- W2902537404 modified "2023-10-04" @default.
- W2902537404 title "Tree-Lists Estimation for Chinese Boreal Forests by Integrating Weibull Diameter Distributions with MODIS-Based Forest Attributes from kNN Imputation" @default.
- W2902537404 cites W1144368330 @default.
- W2902537404 cites W1968474682 @default.
- W2902537404 cites W1974328142 @default.
- W2902537404 cites W1974954165 @default.
- W2902537404 cites W1997337568 @default.
- W2902537404 cites W1998048588 @default.
- W2902537404 cites W2002118027 @default.
- W2902537404 cites W2010573570 @default.
- W2902537404 cites W2012640713 @default.
- W2902537404 cites W2022719221 @default.
- W2902537404 cites W2026867377 @default.
- W2902537404 cites W2065816667 @default.
- W2902537404 cites W2071634982 @default.
- W2902537404 cites W2072334158 @default.
- W2902537404 cites W2075664745 @default.
- W2902537404 cites W2085351206 @default.
- W2902537404 cites W2085547171 @default.
- W2902537404 cites W2093349640 @default.
- W2902537404 cites W2098469025 @default.
- W2902537404 cites W2099655513 @default.
- W2902537404 cites W2133374292 @default.
- W2902537404 cites W2140477672 @default.
- W2902537404 cites W2144819008 @default.
- W2902537404 cites W2150219928 @default.
- W2902537404 cites W2161922175 @default.
- W2902537404 cites W2170927092 @default.
- W2902537404 cites W2216058659 @default.
- W2902537404 cites W2266591399 @default.
- W2902537404 cites W2321728502 @default.
- W2902537404 cites W2329061269 @default.
- W2902537404 cites W2510122264 @default.
- W2902537404 cites W2519724882 @default.
- W2902537404 cites W2614755262 @default.
- W2902537404 cites W2741723480 @default.
- W2902537404 cites W2770061999 @default.
- W2902537404 cites W2790602384 @default.
- W2902537404 cites W2793370749 @default.
- W2902537404 cites W2911964244 @default.
- W2902537404 doi "https://doi.org/10.3390/f9120758" @default.
- W2902537404 hasPublicationYear "2018" @default.
- W2902537404 type Work @default.
- W2902537404 sameAs 2902537404 @default.
- W2902537404 citedByCount "8" @default.
- W2902537404 countsByYear W29025374042020 @default.
- W2902537404 countsByYear W29025374042021 @default.
- W2902537404 countsByYear W29025374042022 @default.
- W2902537404 countsByYear W29025374042023 @default.
- W2902537404 crossrefType "journal-article" @default.
- W2902537404 hasAuthorship W2902537404A5025323495 @default.
- W2902537404 hasAuthorship W2902537404A5040518241 @default.
- W2902537404 hasAuthorship W2902537404A5075810767 @default.
- W2902537404 hasBestOaLocation W29025374041 @default.
- W2902537404 hasConcept C105795698 @default.
- W2902537404 hasConcept C113174947 @default.
- W2902537404 hasConcept C127413603 @default.
- W2902537404 hasConcept C134306372 @default.
- W2902537404 hasConcept C146978453 @default.
- W2902537404 hasConcept C147103442 @default.
- W2902537404 hasConcept C173291955 @default.
- W2902537404 hasConcept C19269812 @default.
- W2902537404 hasConcept C205649164 @default.
- W2902537404 hasConcept C2777007095 @default.
- W2902537404 hasConcept C28631016 @default.
- W2902537404 hasConcept C33923547 @default.
- W2902537404 hasConcept C39432304 @default.
- W2902537404 hasConcept C54286561 @default.
- W2902537404 hasConcept C58041806 @default.
- W2902537404 hasConcept C58330081 @default.
- W2902537404 hasConcept C62649853 @default.
- W2902537404 hasConcept C9357733 @default.
- W2902537404 hasConcept C97137747 @default.
- W2902537404 hasConceptScore W2902537404C105795698 @default.
- W2902537404 hasConceptScore W2902537404C113174947 @default.
- W2902537404 hasConceptScore W2902537404C127413603 @default.
- W2902537404 hasConceptScore W2902537404C134306372 @default.
- W2902537404 hasConceptScore W2902537404C146978453 @default.
- W2902537404 hasConceptScore W2902537404C147103442 @default.
- W2902537404 hasConceptScore W2902537404C173291955 @default.
- W2902537404 hasConceptScore W2902537404C19269812 @default.
- W2902537404 hasConceptScore W2902537404C205649164 @default.
- W2902537404 hasConceptScore W2902537404C2777007095 @default.
- W2902537404 hasConceptScore W2902537404C28631016 @default.
- W2902537404 hasConceptScore W2902537404C33923547 @default.
- W2902537404 hasConceptScore W2902537404C39432304 @default.
- W2902537404 hasConceptScore W2902537404C54286561 @default.
- W2902537404 hasConceptScore W2902537404C58041806 @default.
- W2902537404 hasConceptScore W2902537404C58330081 @default.
- W2902537404 hasConceptScore W2902537404C62649853 @default.
- W2902537404 hasConceptScore W2902537404C9357733 @default.
- W2902537404 hasConceptScore W2902537404C97137747 @default.