Matches in SemOpenAlex for { <https://semopenalex.org/work/W2902540982> ?p ?o ?g. }
- W2902540982 endingPage "568" @default.
- W2902540982 startingPage "559" @default.
- W2902540982 abstract "In an effort to contribute to research in scalable production systems for polymeric delivery systems loaded with antimicrobial peptides (AMPs), we here investigate effects of hydrodynamic flow conditions on microfluidic particle generation. For this purpose, rapid prototyping using 3D printing was applied to prepare micromixers with three different geometric designs, which were used to prepare Ca2+-cross-linked alginate microgels loaded with the AMP polymyxin B in a continuous process. Based on fluid dynamic simulations, the hydrodynamic flow patterns in the micromixers were designed to be either (i) turbulent with chaotic disruption, (ii) laminar with convective mixing, or (iii) convective with microvortex formation. The physicochemical properties of the microgels prepared with these micromixers were characterized by photon correlation spectroscopy, laser-Doppler micro-electrophoresis, small-angle x-ray scattering, and ellipsometry. The particle size and compactness were found to depend on the micromixer geometry: From such studies, particle size and compactness were found to depend on micromixer geometry, the smallest and most compact particles were obtained by preparation involving microvortex flows, while larger and more diffuse microgels were formed upon laminar mixing. Polymyxin B was found to be localized in the particle interior and to cause particle growth with increasing peptide loading. Ca2+-induced cross-linking of alginate, in turn, results in particle contraction. The peptide encapsulation efficiency was found to be higher than 80% for all investigated micromixer designs; the highest encapsulation efficiency observed for the smallest particles generated by microvortex-mediated self-assembly. Ellipsometry results for surface-immobilized microgels, as well as results on peptide encapsulation, demonstrated electrolyte-induced peptide release. Taken together, these findings demonstrate that rapid prototyping of microfluidics using 3D-printed micromixers offers promises for continuous manufacturing of AMP-loaded microgels. Although the micromixer combining turbulent flow and microvortexes was demonstrated to be the most efficient, all three micromixer designs were found to mediate self-assembly of small microgels displaying efficient peptide encapsulation. This demonstrates the robustness of employing 3D-printed micromixers for microfluidic assembly of AMP-loaded microgels during continuous production." @default.
- W2902540982 created "2018-12-11" @default.
- W2902540982 creator A5018101817 @default.
- W2902540982 creator A5019744449 @default.
- W2902540982 creator A5042180788 @default.
- W2902540982 creator A5064411707 @default.
- W2902540982 creator A5075487486 @default.
- W2902540982 creator A5090244511 @default.
- W2902540982 date "2019-03-01" @default.
- W2902540982 modified "2023-09-24" @default.
- W2902540982 title "Microfluidics-based self-assembly of peptide-loaded microgels: Effect of three dimensional (3D) printed micromixer design" @default.
- W2902540982 cites W1490987556 @default.
- W2902540982 cites W1508270260 @default.
- W2902540982 cites W1926708839 @default.
- W2902540982 cites W1969018013 @default.
- W2902540982 cites W1977173073 @default.
- W2902540982 cites W1978300990 @default.
- W2902540982 cites W1982607405 @default.
- W2902540982 cites W1988052373 @default.
- W2902540982 cites W1989998611 @default.
- W2902540982 cites W1997152791 @default.
- W2902540982 cites W1997449658 @default.
- W2902540982 cites W2000913029 @default.
- W2902540982 cites W2007199217 @default.
- W2902540982 cites W2011439060 @default.
- W2902540982 cites W2013133956 @default.
- W2902540982 cites W2017369715 @default.
- W2902540982 cites W2020705345 @default.
- W2902540982 cites W2024132288 @default.
- W2902540982 cites W2040246879 @default.
- W2902540982 cites W2044598213 @default.
- W2902540982 cites W2054754338 @default.
- W2902540982 cites W2055407291 @default.
- W2902540982 cites W2061057444 @default.
- W2902540982 cites W2062223263 @default.
- W2902540982 cites W2063393943 @default.
- W2902540982 cites W2070395446 @default.
- W2902540982 cites W2080483138 @default.
- W2902540982 cites W2082219228 @default.
- W2902540982 cites W2082511674 @default.
- W2902540982 cites W2091998822 @default.
- W2902540982 cites W2093217706 @default.
- W2902540982 cites W2097268982 @default.
- W2902540982 cites W2104772210 @default.
- W2902540982 cites W2114011252 @default.
- W2902540982 cites W2129065348 @default.
- W2902540982 cites W2146029618 @default.
- W2902540982 cites W2155248907 @default.
- W2902540982 cites W2156636836 @default.
- W2902540982 cites W2160501566 @default.
- W2902540982 cites W2175068438 @default.
- W2902540982 cites W2313507925 @default.
- W2902540982 cites W2416323932 @default.
- W2902540982 cites W2417710453 @default.
- W2902540982 cites W2551207187 @default.
- W2902540982 cites W2560374537 @default.
- W2902540982 cites W2579968578 @default.
- W2902540982 cites W2734817487 @default.
- W2902540982 cites W2753348948 @default.
- W2902540982 cites W2767063510 @default.
- W2902540982 cites W2767698222 @default.
- W2902540982 cites W2781008213 @default.
- W2902540982 cites W2792255394 @default.
- W2902540982 cites W2795145326 @default.
- W2902540982 cites W2795470737 @default.
- W2902540982 doi "https://doi.org/10.1016/j.jcis.2018.12.010" @default.
- W2902540982 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30551068" @default.
- W2902540982 hasPublicationYear "2019" @default.
- W2902540982 type Work @default.
- W2902540982 sameAs 2902540982 @default.
- W2902540982 citedByCount "17" @default.
- W2902540982 countsByYear W29025409822019 @default.
- W2902540982 countsByYear W29025409822020 @default.
- W2902540982 countsByYear W29025409822021 @default.
- W2902540982 countsByYear W29025409822022 @default.
- W2902540982 countsByYear W29025409822023 @default.
- W2902540982 crossrefType "journal-article" @default.
- W2902540982 hasAuthorship W2902540982A5018101817 @default.
- W2902540982 hasAuthorship W2902540982A5019744449 @default.
- W2902540982 hasAuthorship W2902540982A5042180788 @default.
- W2902540982 hasAuthorship W2902540982A5064411707 @default.
- W2902540982 hasAuthorship W2902540982A5075487486 @default.
- W2902540982 hasAuthorship W2902540982A5090244511 @default.
- W2902540982 hasConcept C111368507 @default.
- W2902540982 hasConcept C113196181 @default.
- W2902540982 hasConcept C121332964 @default.
- W2902540982 hasConcept C127313418 @default.
- W2902540982 hasConcept C127413603 @default.
- W2902540982 hasConcept C14631669 @default.
- W2902540982 hasConcept C155672457 @default.
- W2902540982 hasConcept C171250308 @default.
- W2902540982 hasConcept C185592680 @default.
- W2902540982 hasConcept C187530423 @default.
- W2902540982 hasConcept C192562407 @default.
- W2902540982 hasConcept C2778517922 @default.
- W2902540982 hasConcept C2780026444 @default.
- W2902540982 hasConcept C2780934452 @default.
- W2902540982 hasConcept C2780982322 @default.