Matches in SemOpenAlex for { <https://semopenalex.org/work/W2902588337> ?p ?o ?g. }
Showing items 1 to 53 of
53
with 100 items per page.
- W2902588337 abstract "Facilities hire cleaning companies to maintain and manage cleaning operations on their restrooms by deploying cleaners who are responsible for performing frequent checks to ensure the cleanliness of restrooms. Nevertheless, the perception of quality and word, clean is very subjective to the observer. Hence, it is not an easy task to quantify the cleanliness. This paper presents a deep learning approach using deep convolutional neural networks (DCNN) to detect and classify the level of cleanliness in restrooms into three different categories; namely dirty, average, and clean. Our method sheds new lights on data augmentation, feature extraction and knowledge transfer between models. The proposed architecture achieved a precision of 0.98, 0.95, 0.80 and recall of 0.99, 0.83, 0.95 for dirty, average, and clean categories respectively utilizing a dataset collected from an active restroom facility." @default.
- W2902588337 created "2018-12-11" @default.
- W2902588337 creator A5060020877 @default.
- W2902588337 creator A5060598893 @default.
- W2902588337 creator A5068689884 @default.
- W2902588337 date "2018-08-01" @default.
- W2902588337 modified "2023-09-27" @default.
- W2902588337 title "A Deep Learning Approach for Classification of Cleanliness in Restrooms" @default.
- W2902588337 cites W1536680647 @default.
- W2902588337 cites W2076794394 @default.
- W2902588337 cites W2117539524 @default.
- W2902588337 cites W2118978333 @default.
- W2902588337 cites W2162491638 @default.
- W2902588337 cites W2183341477 @default.
- W2902588337 cites W4231109964 @default.
- W2902588337 doi "https://doi.org/10.1109/icias.2018.8540592" @default.
- W2902588337 hasPublicationYear "2018" @default.
- W2902588337 type Work @default.
- W2902588337 sameAs 2902588337 @default.
- W2902588337 citedByCount "6" @default.
- W2902588337 countsByYear W29025883372018 @default.
- W2902588337 countsByYear W29025883372019 @default.
- W2902588337 countsByYear W29025883372022 @default.
- W2902588337 countsByYear W29025883372023 @default.
- W2902588337 crossrefType "proceedings-article" @default.
- W2902588337 hasAuthorship W2902588337A5060020877 @default.
- W2902588337 hasAuthorship W2902588337A5060598893 @default.
- W2902588337 hasAuthorship W2902588337A5068689884 @default.
- W2902588337 hasConcept C108583219 @default.
- W2902588337 hasConcept C154945302 @default.
- W2902588337 hasConcept C2522767166 @default.
- W2902588337 hasConcept C41008148 @default.
- W2902588337 hasConceptScore W2902588337C108583219 @default.
- W2902588337 hasConceptScore W2902588337C154945302 @default.
- W2902588337 hasConceptScore W2902588337C2522767166 @default.
- W2902588337 hasConceptScore W2902588337C41008148 @default.
- W2902588337 hasLocation W29025883371 @default.
- W2902588337 hasOpenAccess W2902588337 @default.
- W2902588337 hasPrimaryLocation W29025883371 @default.
- W2902588337 hasRelatedWork W2126887587 @default.
- W2902588337 hasRelatedWork W2731899572 @default.
- W2902588337 hasRelatedWork W2939353110 @default.
- W2902588337 hasRelatedWork W2948658236 @default.
- W2902588337 hasRelatedWork W3009238340 @default.
- W2902588337 hasRelatedWork W3215138031 @default.
- W2902588337 hasRelatedWork W4312962853 @default.
- W2902588337 hasRelatedWork W4321369474 @default.
- W2902588337 hasRelatedWork W4327774331 @default.
- W2902588337 hasRelatedWork W4360585206 @default.
- W2902588337 isParatext "false" @default.
- W2902588337 isRetracted "false" @default.
- W2902588337 magId "2902588337" @default.
- W2902588337 workType "article" @default.