Matches in SemOpenAlex for { <https://semopenalex.org/work/W2902678533> ?p ?o ?g. }
- W2902678533 endingPage "1762" @default.
- W2902678533 startingPage "1753" @default.
- W2902678533 abstract "In the quest for a sustainable economy of the Earth’s resources and for renewable sources of energy, a promising avenue is to exploit the vast quantity of polysaccharide molecules contained in green wastes. To that end, the decomposition of pectin appears to be an interesting target because this polymeric carbohydrate is abundant in many fruit pulps and soft vegetables. To quantitatively study this degradation process, here we designed a bioreactor that is continuously fed with de-esterified pectin (PGA). Thanks to the pectate lyases produced by bacteria cultivated in the vessel, the PGA is depolymerized into oligogalacturonates (UGA), which are continuously extracted from the tank. A mathematical model of our system predicted that the conversion efficiency of PGA into UGA increases in a range of coefficients of dilution until reaching an upper limit where the fraction of UGA that is extracted from the bioreactor is maximized. Results from experiments with a continuous reactor hosting a strain of the plant pathogenic bacterium Dickeya dadantii and in which the dilution coefficients were varied quantitatively validated the predictions of our model. A further theoretical analysis of the system enabled an a priori comparison of the efficiency of eight other pectate lyase–producing microorganisms with that of D. dadantii. Our findings suggest that D. dadantii is the most efficient microorganism and therefore the best candidate for a practical implementation of our scheme for the bioproduction of UGA from PGA. In the quest for a sustainable economy of the Earth’s resources and for renewable sources of energy, a promising avenue is to exploit the vast quantity of polysaccharide molecules contained in green wastes. To that end, the decomposition of pectin appears to be an interesting target because this polymeric carbohydrate is abundant in many fruit pulps and soft vegetables. To quantitatively study this degradation process, here we designed a bioreactor that is continuously fed with de-esterified pectin (PGA). Thanks to the pectate lyases produced by bacteria cultivated in the vessel, the PGA is depolymerized into oligogalacturonates (UGA), which are continuously extracted from the tank. A mathematical model of our system predicted that the conversion efficiency of PGA into UGA increases in a range of coefficients of dilution until reaching an upper limit where the fraction of UGA that is extracted from the bioreactor is maximized. Results from experiments with a continuous reactor hosting a strain of the plant pathogenic bacterium Dickeya dadantii and in which the dilution coefficients were varied quantitatively validated the predictions of our model. A further theoretical analysis of the system enabled an a priori comparison of the efficiency of eight other pectate lyase–producing microorganisms with that of D. dadantii. Our findings suggest that D. dadantii is the most efficient microorganism and therefore the best candidate for a practical implementation of our scheme for the bioproduction of UGA from PGA." @default.
- W2902678533 created "2018-12-11" @default.
- W2902678533 creator A5029211736 @default.
- W2902678533 creator A5034197066 @default.
- W2902678533 creator A5038348565 @default.
- W2902678533 creator A5066109797 @default.
- W2902678533 date "2019-02-01" @default.
- W2902678533 modified "2023-10-15" @default.
- W2902678533 title "Modeling the bioconversion of polysaccharides in a continuous reactor: A case study of the production of oligogalacturonates by Dickeya dadantii" @default.
- W2902678533 cites W1598094877 @default.
- W2902678533 cites W1605287731 @default.
- W2902678533 cites W1802279631 @default.
- W2902678533 cites W1823617690 @default.
- W2902678533 cites W1828208422 @default.
- W2902678533 cites W1898838407 @default.
- W2902678533 cites W1941002773 @default.
- W2902678533 cites W1965302357 @default.
- W2902678533 cites W1965333403 @default.
- W2902678533 cites W2003409774 @default.
- W2902678533 cites W2009878917 @default.
- W2902678533 cites W2039430781 @default.
- W2902678533 cites W2041262632 @default.
- W2902678533 cites W2063303118 @default.
- W2902678533 cites W2064270644 @default.
- W2902678533 cites W2064836772 @default.
- W2902678533 cites W2077172231 @default.
- W2902678533 cites W2084337636 @default.
- W2902678533 cites W2086947055 @default.
- W2902678533 cites W2094703009 @default.
- W2902678533 cites W2097585614 @default.
- W2902678533 cites W2121963480 @default.
- W2902678533 cites W2122559203 @default.
- W2902678533 cites W2141718535 @default.
- W2902678533 cites W2325823108 @default.
- W2902678533 cites W2555038298 @default.
- W2902678533 cites W2563118092 @default.
- W2902678533 cites W2596626541 @default.
- W2902678533 cites W2728206758 @default.
- W2902678533 doi "https://doi.org/10.1074/jbc.ra118.004615" @default.
- W2902678533 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6364777" @default.
- W2902678533 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30510137" @default.
- W2902678533 hasPublicationYear "2019" @default.
- W2902678533 type Work @default.
- W2902678533 sameAs 2902678533 @default.
- W2902678533 citedByCount "4" @default.
- W2902678533 countsByYear W29026785332020 @default.
- W2902678533 countsByYear W29026785332021 @default.
- W2902678533 crossrefType "journal-article" @default.
- W2902678533 hasAuthorship W2902678533A5029211736 @default.
- W2902678533 hasAuthorship W2902678533A5034197066 @default.
- W2902678533 hasAuthorship W2902678533A5038348565 @default.
- W2902678533 hasAuthorship W2902678533A5066109797 @default.
- W2902678533 hasBestOaLocation W29026785331 @default.
- W2902678533 hasConcept C100544194 @default.
- W2902678533 hasConcept C100817775 @default.
- W2902678533 hasConcept C105702510 @default.
- W2902678533 hasConcept C119599485 @default.
- W2902678533 hasConcept C121332964 @default.
- W2902678533 hasConcept C127413603 @default.
- W2902678533 hasConcept C168170006 @default.
- W2902678533 hasConcept C172854840 @default.
- W2902678533 hasConcept C175605896 @default.
- W2902678533 hasConcept C178790620 @default.
- W2902678533 hasConcept C181199279 @default.
- W2902678533 hasConcept C183696295 @default.
- W2902678533 hasConcept C185592680 @default.
- W2902678533 hasConcept C188573790 @default.
- W2902678533 hasConcept C2776681119 @default.
- W2902678533 hasConcept C2778022156 @default.
- W2902678533 hasConcept C2779227428 @default.
- W2902678533 hasConcept C2780074830 @default.
- W2902678533 hasConcept C2780756937 @default.
- W2902678533 hasConcept C31903555 @default.
- W2902678533 hasConcept C523546767 @default.
- W2902678533 hasConcept C528095902 @default.
- W2902678533 hasConcept C54355233 @default.
- W2902678533 hasConcept C548081761 @default.
- W2902678533 hasConcept C55493867 @default.
- W2902678533 hasConcept C86803240 @default.
- W2902678533 hasConcept C96618451 @default.
- W2902678533 hasConcept C97355855 @default.
- W2902678533 hasConceptScore W2902678533C100544194 @default.
- W2902678533 hasConceptScore W2902678533C100817775 @default.
- W2902678533 hasConceptScore W2902678533C105702510 @default.
- W2902678533 hasConceptScore W2902678533C119599485 @default.
- W2902678533 hasConceptScore W2902678533C121332964 @default.
- W2902678533 hasConceptScore W2902678533C127413603 @default.
- W2902678533 hasConceptScore W2902678533C168170006 @default.
- W2902678533 hasConceptScore W2902678533C172854840 @default.
- W2902678533 hasConceptScore W2902678533C175605896 @default.
- W2902678533 hasConceptScore W2902678533C178790620 @default.
- W2902678533 hasConceptScore W2902678533C181199279 @default.
- W2902678533 hasConceptScore W2902678533C183696295 @default.
- W2902678533 hasConceptScore W2902678533C185592680 @default.
- W2902678533 hasConceptScore W2902678533C188573790 @default.
- W2902678533 hasConceptScore W2902678533C2776681119 @default.
- W2902678533 hasConceptScore W2902678533C2778022156 @default.
- W2902678533 hasConceptScore W2902678533C2779227428 @default.