Matches in SemOpenAlex for { <https://semopenalex.org/work/W2902687897> ?p ?o ?g. }
- W2902687897 endingPage "1906" @default.
- W2902687897 startingPage "1906" @default.
- W2902687897 abstract "Particulate matter (PM) has a substantial influence on the environment, climate change and public health. Due to the limited spatial coverage of a ground-level PM2.5 monitoring system, the ground-based PM2.5 concentration measurement is insufficient in many circumstances. In this paper, a Specific Particle Swarm Extinction Mass Conversion Algorithm (SPSEMCA) using remotely sensed data is introduced. Ground-level observed PM2.5, planetary boundary layer height (PBLH) and relative humidity (RH) reanalyzed by the European Centre for Medium-Range Weather Forecasts (ECMWF) and aerosol optical depth (AOD), fine-mode fraction (FMF), particle size distribution, and refractive indices from AERONET (Aerosol Robotic Network) of the Beijing area in 2015 were used to establish this algorithm, and the same datasets for 2016 were used to test the performance of the SPSEMCA. The SPSEMCA involves four steps to obtain PM2.5 values from AOD datasets, and every step has certain advantages: (I) In the particle correction, we use η2.5 (the extinction fraction caused by particles with a diameter less than 2.5 μm) to make an accurate assimilation of AOD2.5, which is contributed to by the specific particle swarm PM2.5. (II) In the vertical correction, we compare the performance of PBLHc retrieved by satellite Lidar CALIPSO data and PBLHe reanalysis by ECMWF. Then, PBLHc is used to make a systematic correction for PBLHe. (III) For extinction to volume conversion, the relative humidity and the FMF are used together to assimilate the AVEC (averaged volume extinction coefficient, μm2/μm3). (IV) PM2.5 measured by ground-based air quality stations are used as the dry mass concentration when calculating the AMV (averaged mass volume, cm3/g) in humidity correction, that will avoid the uncertainties derived from the estimation of the particulate matter density ρ. (V) Multi-Angle Implementation of Atmospheric Correction (MAIAC) 1 km × 1 km AOD was used to retrieve high resolution PM2.5, and a LookUP Table-based Spectral Deconvolution Algorithm (LUT-SDA) FMF was used to avoid the large uncertainties caused by the MODIS FMF product. The validation of PM2.5 from the SPSEMCA algorithm to the AERONET observation data and MODIS monitoring data achieved acceptable results, R = 0.70, RMSE (root mean square error) = 58.75 μg/m3 for AERONET data, R = 0.75, RMSE = 43.38 μg/m3 for MODIS data, respectively. Furthermore, the trend of the temporal and spatial distribution of Beijing was revealed." @default.
- W2902687897 created "2018-12-11" @default.
- W2902687897 creator A5008989575 @default.
- W2902687897 creator A5030767616 @default.
- W2902687897 creator A5038946050 @default.
- W2902687897 creator A5060002817 @default.
- W2902687897 creator A5064459651 @default.
- W2902687897 creator A5081198274 @default.
- W2902687897 date "2018-11-29" @default.
- W2902687897 modified "2023-09-27" @default.
- W2902687897 title "Ground-Level PM2.5 Concentration Estimation from Satellite Data in the Beijing Area Using a Specific Particle Swarm Extinction Mass Conversion Algorithm" @default.
- W2902687897 cites W1979268012 @default.
- W2902687897 cites W1980891198 @default.
- W2902687897 cites W1982544503 @default.
- W2902687897 cites W1985241958 @default.
- W2902687897 cites W1987337512 @default.
- W2902687897 cites W1989304062 @default.
- W2902687897 cites W1990797640 @default.
- W2902687897 cites W2002076718 @default.
- W2902687897 cites W2004348828 @default.
- W2902687897 cites W2011740524 @default.
- W2902687897 cites W2014780629 @default.
- W2902687897 cites W2018482968 @default.
- W2902687897 cites W2020417792 @default.
- W2902687897 cites W2033371937 @default.
- W2902687897 cites W2047467297 @default.
- W2902687897 cites W2059578388 @default.
- W2902687897 cites W2085480533 @default.
- W2902687897 cites W2094462117 @default.
- W2902687897 cites W2119744638 @default.
- W2902687897 cites W2158426942 @default.
- W2902687897 cites W2162982697 @default.
- W2902687897 cites W2297827415 @default.
- W2902687897 cites W2413048520 @default.
- W2902687897 cites W2520198120 @default.
- W2902687897 cites W2588737089 @default.
- W2902687897 cites W2591685540 @default.
- W2902687897 cites W2600974732 @default.
- W2902687897 cites W2742024368 @default.
- W2902687897 cites W2742946820 @default.
- W2902687897 cites W2755735559 @default.
- W2902687897 cites W2792184287 @default.
- W2902687897 cites W2793893092 @default.
- W2902687897 cites W4255082916 @default.
- W2902687897 doi "https://doi.org/10.3390/rs10121906" @default.
- W2902687897 hasPublicationYear "2018" @default.
- W2902687897 type Work @default.
- W2902687897 sameAs 2902687897 @default.
- W2902687897 citedByCount "10" @default.
- W2902687897 countsByYear W29026878972019 @default.
- W2902687897 countsByYear W29026878972020 @default.
- W2902687897 countsByYear W29026878972022 @default.
- W2902687897 countsByYear W29026878972023 @default.
- W2902687897 crossrefType "journal-article" @default.
- W2902687897 hasAuthorship W2902687897A5008989575 @default.
- W2902687897 hasAuthorship W2902687897A5030767616 @default.
- W2902687897 hasAuthorship W2902687897A5038946050 @default.
- W2902687897 hasAuthorship W2902687897A5060002817 @default.
- W2902687897 hasAuthorship W2902687897A5064459651 @default.
- W2902687897 hasAuthorship W2902687897A5081198274 @default.
- W2902687897 hasBestOaLocation W29026878971 @default.
- W2902687897 hasConcept C101991246 @default.
- W2902687897 hasConcept C11413529 @default.
- W2902687897 hasConcept C120665830 @default.
- W2902687897 hasConcept C121332964 @default.
- W2902687897 hasConcept C1276947 @default.
- W2902687897 hasConcept C153294291 @default.
- W2902687897 hasConcept C158960510 @default.
- W2902687897 hasConcept C172461840 @default.
- W2902687897 hasConcept C19269812 @default.
- W2902687897 hasConcept C205649164 @default.
- W2902687897 hasConcept C2777634575 @default.
- W2902687897 hasConcept C2779345167 @default.
- W2902687897 hasConcept C33923547 @default.
- W2902687897 hasConcept C39432304 @default.
- W2902687897 hasConcept C51399673 @default.
- W2902687897 hasConcept C62649853 @default.
- W2902687897 hasConcept C91586092 @default.
- W2902687897 hasConceptScore W2902687897C101991246 @default.
- W2902687897 hasConceptScore W2902687897C11413529 @default.
- W2902687897 hasConceptScore W2902687897C120665830 @default.
- W2902687897 hasConceptScore W2902687897C121332964 @default.
- W2902687897 hasConceptScore W2902687897C1276947 @default.
- W2902687897 hasConceptScore W2902687897C153294291 @default.
- W2902687897 hasConceptScore W2902687897C158960510 @default.
- W2902687897 hasConceptScore W2902687897C172461840 @default.
- W2902687897 hasConceptScore W2902687897C19269812 @default.
- W2902687897 hasConceptScore W2902687897C205649164 @default.
- W2902687897 hasConceptScore W2902687897C2777634575 @default.
- W2902687897 hasConceptScore W2902687897C2779345167 @default.
- W2902687897 hasConceptScore W2902687897C33923547 @default.
- W2902687897 hasConceptScore W2902687897C39432304 @default.
- W2902687897 hasConceptScore W2902687897C51399673 @default.
- W2902687897 hasConceptScore W2902687897C62649853 @default.
- W2902687897 hasConceptScore W2902687897C91586092 @default.
- W2902687897 hasIssue "12" @default.
- W2902687897 hasLocation W29026878971 @default.
- W2902687897 hasLocation W29026878972 @default.