Matches in SemOpenAlex for { <https://semopenalex.org/work/W2902747478> ?p ?o ?g. }
- W2902747478 endingPage "4" @default.
- W2902747478 startingPage "1" @default.
- W2902747478 abstract "Buildings are the world's largest contributors to energy demand, greenhouse gases (GHG) emissions, resource consumption and waste generation. An unmissable opportunity exists to tackle climate change, global warming, and resource scarcity by rethinking how we approach building design. Structural materials often dominate the total mass of a building; therefore, a significant potential for material efficiency and GHG emissions mitigation is to be found in efficient structural design and use of structural materials. To this end, environmental impact assessment methods, such as life cycle assessment (LCA), are increasingly used. However, they risk failing to deliver the expected benefits due to the high number of parameters and uncertainty factors that characterise impacts of buildings along their lifespans. Additionally, effort and cost required for a reliable assessment seem to be major barriers to a more widespread adoption of LCA. More rapid progress towards reducing building impacts seems therefore possible by combining established environmental impact assessment methods with artificial intelligence approaches such as machine learning and neural networks. This short communication will briefly present previous attempts to employ such techniques in civil and structural engineering. It will present likely outcomes of machine learning and neural network applications in the field of structural engineering and – most importantly – it calls for data from professionals across the globe to form a fundamental basis which will enable quicker transition to a more sustainable built environment." @default.
- W2902747478 created "2018-12-11" @default.
- W2902747478 creator A5027651762 @default.
- W2902747478 creator A5028451104 @default.
- W2902747478 creator A5033391672 @default.
- W2902747478 creator A5034675124 @default.
- W2902747478 creator A5043386140 @default.
- W2902747478 creator A5047198641 @default.
- W2902747478 creator A5053842265 @default.
- W2902747478 creator A5072211532 @default.
- W2902747478 creator A5088708400 @default.
- W2902747478 date "2019-06-01" @default.
- W2902747478 modified "2023-10-14" @default.
- W2902747478 title "Machine Learning for Sustainable Structures: A Call for Data" @default.
- W2902747478 cites W1993459632 @default.
- W2902747478 cites W2039720800 @default.
- W2902747478 cites W2048370585 @default.
- W2902747478 cites W2076063813 @default.
- W2902747478 cites W2262339025 @default.
- W2902747478 cites W2508152695 @default.
- W2902747478 cites W2555697849 @default.
- W2902747478 cites W2563187409 @default.
- W2902747478 cites W2569607568 @default.
- W2902747478 cites W2580295879 @default.
- W2902747478 cites W2582174159 @default.
- W2902747478 cites W2594056788 @default.
- W2902747478 cites W2607650933 @default.
- W2902747478 cites W2626223001 @default.
- W2902747478 cites W2655135839 @default.
- W2902747478 cites W2741910248 @default.
- W2902747478 cites W2763685548 @default.
- W2902747478 cites W2770820547 @default.
- W2902747478 cites W333311942 @default.
- W2902747478 doi "https://doi.org/10.1016/j.istruc.2018.11.013" @default.
- W2902747478 hasPublicationYear "2019" @default.
- W2902747478 type Work @default.
- W2902747478 sameAs 2902747478 @default.
- W2902747478 citedByCount "35" @default.
- W2902747478 countsByYear W29027474782019 @default.
- W2902747478 countsByYear W29027474782020 @default.
- W2902747478 countsByYear W29027474782021 @default.
- W2902747478 countsByYear W29027474782022 @default.
- W2902747478 countsByYear W29027474782023 @default.
- W2902747478 crossrefType "journal-article" @default.
- W2902747478 hasAuthorship W2902747478A5027651762 @default.
- W2902747478 hasAuthorship W2902747478A5028451104 @default.
- W2902747478 hasAuthorship W2902747478A5033391672 @default.
- W2902747478 hasAuthorship W2902747478A5034675124 @default.
- W2902747478 hasAuthorship W2902747478A5043386140 @default.
- W2902747478 hasAuthorship W2902747478A5047198641 @default.
- W2902747478 hasAuthorship W2902747478A5053842265 @default.
- W2902747478 hasAuthorship W2902747478A5072211532 @default.
- W2902747478 hasAuthorship W2902747478A5088708400 @default.
- W2902747478 hasBestOaLocation W29027474782 @default.
- W2902747478 hasConcept C107826830 @default.
- W2902747478 hasConcept C109747225 @default.
- W2902747478 hasConcept C112930515 @default.
- W2902747478 hasConcept C115343472 @default.
- W2902747478 hasConcept C127413603 @default.
- W2902747478 hasConcept C132651083 @default.
- W2902747478 hasConcept C134560507 @default.
- W2902747478 hasConcept C139719470 @default.
- W2902747478 hasConcept C144133560 @default.
- W2902747478 hasConcept C162324750 @default.
- W2902747478 hasConcept C164749845 @default.
- W2902747478 hasConcept C175444787 @default.
- W2902747478 hasConcept C175605778 @default.
- W2902747478 hasConcept C18903297 @default.
- W2902747478 hasConcept C206345919 @default.
- W2902747478 hasConcept C2777958785 @default.
- W2902747478 hasConcept C2778348673 @default.
- W2902747478 hasConcept C2778706760 @default.
- W2902747478 hasConcept C2994506628 @default.
- W2902747478 hasConcept C31258907 @default.
- W2902747478 hasConcept C39432304 @default.
- W2902747478 hasConcept C41008148 @default.
- W2902747478 hasConcept C47737302 @default.
- W2902747478 hasConcept C86803240 @default.
- W2902747478 hasConceptScore W2902747478C107826830 @default.
- W2902747478 hasConceptScore W2902747478C109747225 @default.
- W2902747478 hasConceptScore W2902747478C112930515 @default.
- W2902747478 hasConceptScore W2902747478C115343472 @default.
- W2902747478 hasConceptScore W2902747478C127413603 @default.
- W2902747478 hasConceptScore W2902747478C132651083 @default.
- W2902747478 hasConceptScore W2902747478C134560507 @default.
- W2902747478 hasConceptScore W2902747478C139719470 @default.
- W2902747478 hasConceptScore W2902747478C144133560 @default.
- W2902747478 hasConceptScore W2902747478C162324750 @default.
- W2902747478 hasConceptScore W2902747478C164749845 @default.
- W2902747478 hasConceptScore W2902747478C175444787 @default.
- W2902747478 hasConceptScore W2902747478C175605778 @default.
- W2902747478 hasConceptScore W2902747478C18903297 @default.
- W2902747478 hasConceptScore W2902747478C206345919 @default.
- W2902747478 hasConceptScore W2902747478C2777958785 @default.
- W2902747478 hasConceptScore W2902747478C2778348673 @default.
- W2902747478 hasConceptScore W2902747478C2778706760 @default.
- W2902747478 hasConceptScore W2902747478C2994506628 @default.
- W2902747478 hasConceptScore W2902747478C31258907 @default.