Matches in SemOpenAlex for { <https://semopenalex.org/work/W2902776281> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2902776281 abstract "Deep learning has significant potential for medical imaging. However, since the incident rate of each disease varies widely, the frequency of classes in a medical image dataset is imbalanced, leading to poor accuracy for such infrequent classes. One possible solution is data augmentation of infrequent classes using synthesized images created by Generative Adversarial Networks (GANs), but conventional GANs also require certain amount of images to learn. To overcome this limitation, here we propose General-to-detailed GAN (GDGAN), serially connected two GANs, one for general labels and the other for detailed labels. GDGAN produced diverse medical images, and the network trained with an augmented dataset outperformed other networks using existing methods with respect to Area-Under-Curve (AUC) of Receiver Operating Characteristic (ROC) curve." @default.
- W2902776281 created "2018-12-11" @default.
- W2902776281 creator A5022139141 @default.
- W2902776281 creator A5068713982 @default.
- W2902776281 creator A5070276924 @default.
- W2902776281 creator A5083645638 @default.
- W2902776281 date "2018-11-28" @default.
- W2902776281 modified "2023-09-26" @default.
- W2902776281 title "General-to-Detailed GAN for Infrequent Class Medical Images" @default.
- W2902776281 cites W1522301498 @default.
- W2902776281 cites W1686810756 @default.
- W2902776281 cites W2108598243 @default.
- W2902776281 cites W2132791018 @default.
- W2902776281 cites W2432004435 @default.
- W2902776281 cites W2548275288 @default.
- W2902776281 cites W2605135824 @default.
- W2902776281 cites W2752237898 @default.
- W2902776281 cites W2770173563 @default.
- W2902776281 cites W2794022343 @default.
- W2902776281 cites W2798261681 @default.
- W2902776281 cites W3101156210 @default.
- W2902776281 doi "https://doi.org/10.48550/arxiv.1812.01690" @default.
- W2902776281 hasPublicationYear "2018" @default.
- W2902776281 type Work @default.
- W2902776281 sameAs 2902776281 @default.
- W2902776281 citedByCount "0" @default.
- W2902776281 crossrefType "posted-content" @default.
- W2902776281 hasAuthorship W2902776281A5022139141 @default.
- W2902776281 hasAuthorship W2902776281A5068713982 @default.
- W2902776281 hasAuthorship W2902776281A5070276924 @default.
- W2902776281 hasAuthorship W2902776281A5083645638 @default.
- W2902776281 hasBestOaLocation W29027762811 @default.
- W2902776281 hasConcept C115961682 @default.
- W2902776281 hasConcept C119857082 @default.
- W2902776281 hasConcept C153180895 @default.
- W2902776281 hasConcept C154945302 @default.
- W2902776281 hasConcept C2777212361 @default.
- W2902776281 hasConcept C2988773926 @default.
- W2902776281 hasConcept C37736160 @default.
- W2902776281 hasConcept C39890363 @default.
- W2902776281 hasConcept C41008148 @default.
- W2902776281 hasConcept C58471807 @default.
- W2902776281 hasConceptScore W2902776281C115961682 @default.
- W2902776281 hasConceptScore W2902776281C119857082 @default.
- W2902776281 hasConceptScore W2902776281C153180895 @default.
- W2902776281 hasConceptScore W2902776281C154945302 @default.
- W2902776281 hasConceptScore W2902776281C2777212361 @default.
- W2902776281 hasConceptScore W2902776281C2988773926 @default.
- W2902776281 hasConceptScore W2902776281C37736160 @default.
- W2902776281 hasConceptScore W2902776281C39890363 @default.
- W2902776281 hasConceptScore W2902776281C41008148 @default.
- W2902776281 hasConceptScore W2902776281C58471807 @default.
- W2902776281 hasLocation W29027762811 @default.
- W2902776281 hasOpenAccess W2902776281 @default.
- W2902776281 hasPrimaryLocation W29027762811 @default.
- W2902776281 hasRelatedWork W2944432393 @default.
- W2902776281 hasRelatedWork W2982455199 @default.
- W2902776281 hasRelatedWork W3022669721 @default.
- W2902776281 hasRelatedWork W3024390022 @default.
- W2902776281 hasRelatedWork W3037184111 @default.
- W2902776281 hasRelatedWork W3156291593 @default.
- W2902776281 hasRelatedWork W3178813832 @default.
- W2902776281 hasRelatedWork W4206598283 @default.
- W2902776281 hasRelatedWork W4313479464 @default.
- W2902776281 hasRelatedWork W4316035501 @default.
- W2902776281 isParatext "false" @default.
- W2902776281 isRetracted "false" @default.
- W2902776281 magId "2902776281" @default.
- W2902776281 workType "article" @default.