Matches in SemOpenAlex for { <https://semopenalex.org/work/W2902807116> ?p ?o ?g. }
- W2902807116 endingPage "1904" @default.
- W2902807116 startingPage "1904" @default.
- W2902807116 abstract "Fires associated with the expansion of cattle ranching and agriculture have become a problem in the Amazon biome, causing severe environmental damages. Remote sensing techniques have been widely used in fire monitoring on the extensive Amazon forest, but accurate automated fire detection needs improvements. The popular Moderate Resolution Imaging Spectroradiometer (MODIS) MCD64 product still has high omission errors in the region. This research aimed to evaluate MODIS time series spectral indices for mapping burned areas in the municipality of Novo Progresso (State of Pará) and to determine their accuracy in the different types of land use/land cover during the period 2000–2014. The burned area mapping from 8-day composite products, compared the following data: near-infrared (NIR) band; spectral indices (Burnt Area Index (BAIM), Global Environmental Monitoring Index (GEMI), Mid Infrared Burn Index (MIRBI), Normalized Burn Ratio (NBR), variation of Normalized Burn Ratio (NBR2), and Normalized Difference Vegetation Index (NDVI)); and the seasonal difference of spectral indices. Moreover, we compared the time series normalization methods per pixel (zero-mean normalization and Z-score) and the seasonal difference between consecutive years. Threshold-value determination for the fire occurrences was obtained from the comparison of MODIS series with visual image classification of Landsat Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Operational Land Imager (OLI) data using the overall accuracy. The best result considered the following factors: NIR band and zero-mean normalization, obtaining the overall accuracy of 98.99%, commission errors of 32.41%, and omission errors of 31.64%. The proposed method presented better results in burned area detection in the natural fields (Campinarana) with an overall accuracy value of 99.25%, commission errors of 9.71%, and omission errors of 27.60%, as well as pasture, with overall accuracy value of 99.19%, commission errors of 27.60%, and omission errors of 34.76%. Forest areas had a lower accuracy, with an overall accuracy of 98.62%, commission errors of 23.40%, and omission errors of 49.62%. The best performance of the burned area detection in the pastures is relevant because the deforested areas are responsible for more than 70% of fire events. The results of the proposed method were better than the burned area products (MCD45, MCD64, and FIRE-CCI), but still presented limitations in the identification of burn events in the savanna formations and secondary vegetation." @default.
- W2902807116 created "2018-12-11" @default.
- W2902807116 creator A5010086108 @default.
- W2902807116 creator A5056966645 @default.
- W2902807116 creator A5057329014 @default.
- W2902807116 creator A5083036615 @default.
- W2902807116 date "2018-11-29" @default.
- W2902807116 modified "2023-10-16" @default.
- W2902807116 title "Burned-Area Detection in Amazonian Environments Using Standardized Time Series Per Pixel in MODIS Data" @default.
- W2902807116 cites W1502923721 @default.
- W2902807116 cites W1626806761 @default.
- W2902807116 cites W1908974379 @default.
- W2902807116 cites W1958019422 @default.
- W2902807116 cites W1972670317 @default.
- W2902807116 cites W1975873570 @default.
- W2902807116 cites W1977431871 @default.
- W2902807116 cites W1980058571 @default.
- W2902807116 cites W1984289579 @default.
- W2902807116 cites W1987407090 @default.
- W2902807116 cites W1988126207 @default.
- W2902807116 cites W1992299760 @default.
- W2902807116 cites W1995549076 @default.
- W2902807116 cites W1998109457 @default.
- W2902807116 cites W1999900491 @default.
- W2902807116 cites W2000188520 @default.
- W2902807116 cites W2008540628 @default.
- W2902807116 cites W2013658966 @default.
- W2902807116 cites W2017926030 @default.
- W2902807116 cites W2022029825 @default.
- W2902807116 cites W2024689500 @default.
- W2902807116 cites W2026539388 @default.
- W2902807116 cites W2027642249 @default.
- W2902807116 cites W2027796720 @default.
- W2902807116 cites W2027973723 @default.
- W2902807116 cites W2028787109 @default.
- W2902807116 cites W2028909374 @default.
- W2902807116 cites W2029975600 @default.
- W2902807116 cites W2035489534 @default.
- W2902807116 cites W2041177409 @default.
- W2902807116 cites W2048615881 @default.
- W2902807116 cites W2055577910 @default.
- W2902807116 cites W2056724844 @default.
- W2902807116 cites W2059455952 @default.
- W2902807116 cites W2060572706 @default.
- W2902807116 cites W2065251532 @default.
- W2902807116 cites W2066155768 @default.
- W2902807116 cites W2070242798 @default.
- W2902807116 cites W2070481294 @default.
- W2902807116 cites W2072631841 @default.
- W2902807116 cites W2084413241 @default.
- W2902807116 cites W2085282193 @default.
- W2902807116 cites W2085918337 @default.
- W2902807116 cites W2086693959 @default.
- W2902807116 cites W2087463450 @default.
- W2902807116 cites W2089501297 @default.
- W2902807116 cites W2095967426 @default.
- W2902807116 cites W2097143166 @default.
- W2902807116 cites W2097553599 @default.
- W2902807116 cites W2098695466 @default.
- W2902807116 cites W2109806406 @default.
- W2902807116 cites W2113206323 @default.
- W2902807116 cites W2114059059 @default.
- W2902807116 cites W2115202221 @default.
- W2902807116 cites W2115694969 @default.
- W2902807116 cites W2118838161 @default.
- W2902807116 cites W2119437889 @default.
- W2902807116 cites W2124606751 @default.
- W2902807116 cites W2126013952 @default.
- W2902807116 cites W2126076886 @default.
- W2902807116 cites W2126077800 @default.
- W2902807116 cites W2126369457 @default.
- W2902807116 cites W2129157648 @default.
- W2902807116 cites W2129308224 @default.
- W2902807116 cites W2132294441 @default.
- W2902807116 cites W2135656510 @default.
- W2902807116 cites W2138973222 @default.
- W2902807116 cites W2144059664 @default.
- W2902807116 cites W2146160852 @default.
- W2902807116 cites W2151036870 @default.
- W2902807116 cites W2159918826 @default.
- W2902807116 cites W2163319898 @default.
- W2902807116 cites W2165868425 @default.
- W2902807116 cites W2166062434 @default.
- W2902807116 cites W2168411714 @default.
- W2902807116 cites W2168481151 @default.
- W2902807116 cites W2170163904 @default.
- W2902807116 cites W2171187785 @default.
- W2902807116 cites W2171737768 @default.
- W2902807116 cites W2179943257 @default.
- W2902807116 cites W2314942240 @default.
- W2902807116 cites W2554164826 @default.
- W2902807116 cites W2563911698 @default.
- W2902807116 cites W2758738932 @default.
- W2902807116 cites W2794040130 @default.
- W2902807116 cites W2804647602 @default.
- W2902807116 cites W2804804645 @default.
- W2902807116 cites W4231022927 @default.
- W2902807116 cites W4312843776 @default.