Matches in SemOpenAlex for { <https://semopenalex.org/work/W2902868144> ?p ?o ?g. }
- W2902868144 endingPage "217" @default.
- W2902868144 startingPage "203" @default.
- W2902868144 abstract "Destination prediction is an essential task in various mobile applications and up to now many methods have been proposed. However, existing methods usually suffer from the problems of heavy computational burden, data sparsity, and low coverage. Therefore, a novel approach named DestPD is proposed to tackle the aforementioned problems. Differing from an earlier approach that only considers the starting and current location of a partial trip, DestPD first determines the most likely future location and then predicts the destination. It comprises two phases, the offline training and the online prediction. During the offline training, transition probabilities between two locations are obtained via Markov transition matrix multiplication. In order to improve the efficiency of matrix multiplication, we propose two data constructs, Efficient Transition Probability (ETP) and Transition Probabilities with Detours (TPD). They are capable of pinpointing the minimum amount of needed computation. During the online prediction, we design Obligatory Update Point (OUP) and Transition Affected Area (TAA) to accelerate the frequent update of ETP and TPD for recomputing the transition probabilities. Moreover, a new future trajectory prediction approach is devised. It captures the most recent movement based on a query trajectory. It consists of two components: similarity finding through Best Path Notation (BPN) and best node selection. Our novel BPN similarity finding scheme keeps track of the nodes that induces inefficiency and then finds similarity fast based on these nodes. It is particularly suitable for trajectories with overlapping segments. Finally, the destination is predicted by combining transition probabilities and the most probable future location through Bayesian reasoning. The DestPD method is proved to achieve one order of cut in both time and space complexity. Furthermore, the experimental results on real-world and synthetic datasets have shown that DestPD consistently surpasses the state-of-the-art methods in terms of both efficiency (approximately over 100 times faster) and accuracy." @default.
- W2902868144 created "2018-12-11" @default.
- W2902868144 creator A5007928773 @default.
- W2902868144 creator A5014623594 @default.
- W2902868144 creator A5035138570 @default.
- W2902868144 creator A5041465731 @default.
- W2902868144 creator A5064274436 @default.
- W2902868144 creator A5065194313 @default.
- W2902868144 creator A5067731925 @default.
- W2902868144 creator A5074090518 @default.
- W2902868144 date "2020-02-01" @default.
- W2902868144 modified "2023-10-14" @default.
- W2902868144 title "An Efficient Destination Prediction Approach Based on Future Trajectory Prediction and Transition Matrix Optimization" @default.
- W2902868144 cites W152691338 @default.
- W2902868144 cites W1968010112 @default.
- W2902868144 cites W1971380562 @default.
- W2902868144 cites W1972243012 @default.
- W2902868144 cites W1976094288 @default.
- W2902868144 cites W1988456504 @default.
- W2902868144 cites W1997458143 @default.
- W2902868144 cites W2007572995 @default.
- W2902868144 cites W2008414295 @default.
- W2902868144 cites W2009155608 @default.
- W2902868144 cites W2017392740 @default.
- W2902868144 cites W2023279748 @default.
- W2902868144 cites W2034479787 @default.
- W2902868144 cites W2045563097 @default.
- W2902868144 cites W2057432930 @default.
- W2902868144 cites W2061491724 @default.
- W2902868144 cites W2062231365 @default.
- W2902868144 cites W2070915285 @default.
- W2902868144 cites W2077451659 @default.
- W2902868144 cites W2080206036 @default.
- W2902868144 cites W2099141754 @default.
- W2902868144 cites W2110953678 @default.
- W2902868144 cites W2111876445 @default.
- W2902868144 cites W2115450697 @default.
- W2902868144 cites W2117742206 @default.
- W2902868144 cites W2118371392 @default.
- W2902868144 cites W2136580807 @default.
- W2902868144 cites W2138198492 @default.
- W2902868144 cites W2141596757 @default.
- W2902868144 cites W2144758644 @default.
- W2902868144 cites W2147880780 @default.
- W2902868144 cites W2149814409 @default.
- W2902868144 cites W2153207204 @default.
- W2902868144 cites W2250447163 @default.
- W2902868144 cites W2362771282 @default.
- W2902868144 cites W2507288376 @default.
- W2902868144 cites W2511826256 @default.
- W2902868144 cites W2619271002 @default.
- W2902868144 cites W2730222300 @default.
- W2902868144 cites W4241186228 @default.
- W2902868144 doi "https://doi.org/10.1109/tkde.2018.2883938" @default.
- W2902868144 hasPublicationYear "2020" @default.
- W2902868144 type Work @default.
- W2902868144 sameAs 2902868144 @default.
- W2902868144 citedByCount "14" @default.
- W2902868144 countsByYear W29028681442019 @default.
- W2902868144 countsByYear W29028681442020 @default.
- W2902868144 countsByYear W29028681442021 @default.
- W2902868144 countsByYear W29028681442022 @default.
- W2902868144 countsByYear W29028681442023 @default.
- W2902868144 crossrefType "journal-article" @default.
- W2902868144 hasAuthorship W2902868144A5007928773 @default.
- W2902868144 hasAuthorship W2902868144A5014623594 @default.
- W2902868144 hasAuthorship W2902868144A5035138570 @default.
- W2902868144 hasAuthorship W2902868144A5041465731 @default.
- W2902868144 hasAuthorship W2902868144A5064274436 @default.
- W2902868144 hasAuthorship W2902868144A5065194313 @default.
- W2902868144 hasAuthorship W2902868144A5067731925 @default.
- W2902868144 hasAuthorship W2902868144A5074090518 @default.
- W2902868144 hasConcept C103278499 @default.
- W2902868144 hasConcept C115961682 @default.
- W2902868144 hasConcept C119857082 @default.
- W2902868144 hasConcept C121332964 @default.
- W2902868144 hasConcept C124101348 @default.
- W2902868144 hasConcept C1276947 @default.
- W2902868144 hasConcept C13662910 @default.
- W2902868144 hasConcept C154945302 @default.
- W2902868144 hasConcept C158693339 @default.
- W2902868144 hasConcept C162324750 @default.
- W2902868144 hasConcept C175444787 @default.
- W2902868144 hasConcept C199360897 @default.
- W2902868144 hasConcept C2777735758 @default.
- W2902868144 hasConcept C2778869765 @default.
- W2902868144 hasConcept C41008148 @default.
- W2902868144 hasConcept C42355184 @default.
- W2902868144 hasConcept C49555168 @default.
- W2902868144 hasConcept C62520636 @default.
- W2902868144 hasConcept C98763669 @default.
- W2902868144 hasConceptScore W2902868144C103278499 @default.
- W2902868144 hasConceptScore W2902868144C115961682 @default.
- W2902868144 hasConceptScore W2902868144C119857082 @default.
- W2902868144 hasConceptScore W2902868144C121332964 @default.
- W2902868144 hasConceptScore W2902868144C124101348 @default.
- W2902868144 hasConceptScore W2902868144C1276947 @default.
- W2902868144 hasConceptScore W2902868144C13662910 @default.