Matches in SemOpenAlex for { <https://semopenalex.org/work/W2902880752> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2902880752 endingPage "10" @default.
- W2902880752 startingPage "1" @default.
- W2902880752 abstract "In this paper, computer vision enables recommending a reduced order model for fast stress prediction according to various possible loading environments. This approach is applied on a macroscopic part by using a digital image of a mechanical test. We propose a hybrid approach that simultaneously exploits a data-driven model and a physics-based model, in mechanics of materials. During a machine learning stage, a classification of possible reduced order models is obtained through a clustering of loading environments by using simulation data. The recognition of the suitable reduced order model is performed via a convolutional neural network (CNN) applied to a digital image of the mechanical test. The CNN recommend a convenient mechanical model available in a dictionary of reduced order models. The output of the convolutional neural network being a model, an error estimator, is proposed to assess the accuracy of this output. This article details simple algorithmic choices that allowed a realistic mechanical modeling via computer vision." @default.
- W2902880752 created "2018-12-11" @default.
- W2902880752 creator A5018278277 @default.
- W2902880752 creator A5045008135 @default.
- W2902880752 creator A5063653501 @default.
- W2902880752 creator A5089116533 @default.
- W2902880752 date "2018-12-02" @default.
- W2902880752 modified "2023-10-17" @default.
- W2902880752 title "Computer Vision with Error Estimation for Reduced Order Modeling of Macroscopic Mechanical Tests" @default.
- W2902880752 cites W1008475933 @default.
- W2902880752 cites W1563697767 @default.
- W2902880752 cites W1992758334 @default.
- W2902880752 cites W2001518794 @default.
- W2902880752 cites W2007422320 @default.
- W2902880752 cites W2010406331 @default.
- W2902880752 cites W2038198231 @default.
- W2902880752 cites W2048051488 @default.
- W2902880752 cites W2075783780 @default.
- W2902880752 cites W2114498139 @default.
- W2902880752 cites W2128227294 @default.
- W2902880752 cites W2128462392 @default.
- W2902880752 cites W2139168617 @default.
- W2902880752 cites W2155832827 @default.
- W2902880752 cites W2156502168 @default.
- W2902880752 cites W2290242200 @default.
- W2902880752 cites W2305265259 @default.
- W2902880752 cites W2413934709 @default.
- W2902880752 cites W2417822151 @default.
- W2902880752 cites W2554406836 @default.
- W2902880752 cites W2612390895 @default.
- W2902880752 cites W2621497448 @default.
- W2902880752 cites W2789517445 @default.
- W2902880752 cites W2792509931 @default.
- W2902880752 doi "https://doi.org/10.1155/2018/3791543" @default.
- W2902880752 hasPublicationYear "2018" @default.
- W2902880752 type Work @default.
- W2902880752 sameAs 2902880752 @default.
- W2902880752 citedByCount "7" @default.
- W2902880752 countsByYear W29028807522020 @default.
- W2902880752 countsByYear W29028807522021 @default.
- W2902880752 countsByYear W29028807522022 @default.
- W2902880752 countsByYear W29028807522023 @default.
- W2902880752 crossrefType "journal-article" @default.
- W2902880752 hasAuthorship W2902880752A5018278277 @default.
- W2902880752 hasAuthorship W2902880752A5045008135 @default.
- W2902880752 hasAuthorship W2902880752A5063653501 @default.
- W2902880752 hasAuthorship W2902880752A5089116533 @default.
- W2902880752 hasBestOaLocation W29028807521 @default.
- W2902880752 hasConcept C105795698 @default.
- W2902880752 hasConcept C115961682 @default.
- W2902880752 hasConcept C119857082 @default.
- W2902880752 hasConcept C154945302 @default.
- W2902880752 hasConcept C16910744 @default.
- W2902880752 hasConcept C171912257 @default.
- W2902880752 hasConcept C185429906 @default.
- W2902880752 hasConcept C199360897 @default.
- W2902880752 hasConcept C33923547 @default.
- W2902880752 hasConcept C41008148 @default.
- W2902880752 hasConcept C50644808 @default.
- W2902880752 hasConcept C73555534 @default.
- W2902880752 hasConcept C81363708 @default.
- W2902880752 hasConceptScore W2902880752C105795698 @default.
- W2902880752 hasConceptScore W2902880752C115961682 @default.
- W2902880752 hasConceptScore W2902880752C119857082 @default.
- W2902880752 hasConceptScore W2902880752C154945302 @default.
- W2902880752 hasConceptScore W2902880752C16910744 @default.
- W2902880752 hasConceptScore W2902880752C171912257 @default.
- W2902880752 hasConceptScore W2902880752C185429906 @default.
- W2902880752 hasConceptScore W2902880752C199360897 @default.
- W2902880752 hasConceptScore W2902880752C33923547 @default.
- W2902880752 hasConceptScore W2902880752C41008148 @default.
- W2902880752 hasConceptScore W2902880752C50644808 @default.
- W2902880752 hasConceptScore W2902880752C73555534 @default.
- W2902880752 hasConceptScore W2902880752C81363708 @default.
- W2902880752 hasLocation W29028807521 @default.
- W2902880752 hasLocation W29028807522 @default.
- W2902880752 hasLocation W29028807523 @default.
- W2902880752 hasOpenAccess W2902880752 @default.
- W2902880752 hasPrimaryLocation W29028807521 @default.
- W2902880752 hasRelatedWork W2521062615 @default.
- W2902880752 hasRelatedWork W2961085424 @default.
- W2902880752 hasRelatedWork W3016958897 @default.
- W2902880752 hasRelatedWork W3021430260 @default.
- W2902880752 hasRelatedWork W3027997911 @default.
- W2902880752 hasRelatedWork W3181746755 @default.
- W2902880752 hasRelatedWork W4280641190 @default.
- W2902880752 hasRelatedWork W4287776258 @default.
- W2902880752 hasRelatedWork W4306674287 @default.
- W2902880752 hasRelatedWork W4224009465 @default.
- W2902880752 hasVolume "2018" @default.
- W2902880752 isParatext "false" @default.
- W2902880752 isRetracted "false" @default.
- W2902880752 magId "2902880752" @default.
- W2902880752 workType "article" @default.