Matches in SemOpenAlex for { <https://semopenalex.org/work/W2902912384> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2902912384 abstract "In the classical vertex-weighted Steiner tree problem (VST), one is given an undirected graph $G = (V,E)$ with nonnegative vertex weights, and a set $T subseteq V$ of terminals. The objective is to compute a minimum-weight tree that spans $T$. The VST problem is NP-hard and it is NP-hard to approximate VST to within factor $(1-varepsilon)ln |T|$, but nearly-best approximation algorithms exist including the $2ln |T|-$approximation algorithm of [Klein& Ravi, 1995]. Steiner tree problems and their variants have many applications, from combinatorial optimization and network routing to geometry and visualization. In some applications, the terminals may have different levels, priorities, or rate-of-service requirements. For problems of this type, we study a natural generalization of the VST problem to multiple levels, referred to as the vertex-weighted, multi-level Steiner tree (V-MLST) problem: given a vertex-weighted graph $G = (V,E)$ and $ell ge 2$ nested terminal sets $T_{ell} subset T_{ell-1} subset cdots subset T_{1}subseteq V$, compute a nested set of $G_ell subseteq G_{ell-1} subseteq cdots subseteq G_1$ where each tree $G_i$ spans its corresponding terminal set $T_i$, with minimum total weight. We introduce a simple heuristic with approximation ratio $O(ell ln |T_1|)$, which runs in a top-down manner using a single-level VST subroutine. We then show that the V-MLST problem can be approximated to within $2 ln|T_1|$ of the optimum with a greedy algorithm that connects level-respecting trees at each iteration with a minimum cost-to-connectivity ratio. This result is counterintuitive as it suggests that the seemingly harder multi-level version is not indeed harder than the single-level VST problem to approximate. The key tool in the analysis of our greedy approximation algorithm is a new tailed spider decomposition." @default.
- W2902912384 created "2018-12-11" @default.
- W2902912384 creator A5003147292 @default.
- W2902912384 creator A5037980737 @default.
- W2902912384 creator A5083767818 @default.
- W2902912384 creator A5088611621 @default.
- W2902912384 date "2018-11-28" @default.
- W2902912384 modified "2023-09-27" @default.
- W2902912384 title "Computing Vertex-Weighted Multi-Level Steiner Trees." @default.
- W2902912384 hasPublicationYear "2018" @default.
- W2902912384 type Work @default.
- W2902912384 sameAs 2902912384 @default.
- W2902912384 citedByCount "0" @default.
- W2902912384 crossrefType "posted-content" @default.
- W2902912384 hasAuthorship W2902912384A5003147292 @default.
- W2902912384 hasAuthorship W2902912384A5037980737 @default.
- W2902912384 hasAuthorship W2902912384A5083767818 @default.
- W2902912384 hasAuthorship W2902912384A5088611621 @default.
- W2902912384 hasConcept C113174947 @default.
- W2902912384 hasConcept C11413529 @default.
- W2902912384 hasConcept C114614502 @default.
- W2902912384 hasConcept C118615104 @default.
- W2902912384 hasConcept C132525143 @default.
- W2902912384 hasConcept C148764684 @default.
- W2902912384 hasConcept C3018234147 @default.
- W2902912384 hasConcept C33923547 @default.
- W2902912384 hasConcept C51823790 @default.
- W2902912384 hasConcept C76220878 @default.
- W2902912384 hasConcept C80899671 @default.
- W2902912384 hasConceptScore W2902912384C113174947 @default.
- W2902912384 hasConceptScore W2902912384C11413529 @default.
- W2902912384 hasConceptScore W2902912384C114614502 @default.
- W2902912384 hasConceptScore W2902912384C118615104 @default.
- W2902912384 hasConceptScore W2902912384C132525143 @default.
- W2902912384 hasConceptScore W2902912384C148764684 @default.
- W2902912384 hasConceptScore W2902912384C3018234147 @default.
- W2902912384 hasConceptScore W2902912384C33923547 @default.
- W2902912384 hasConceptScore W2902912384C51823790 @default.
- W2902912384 hasConceptScore W2902912384C76220878 @default.
- W2902912384 hasConceptScore W2902912384C80899671 @default.
- W2902912384 hasLocation W29029123841 @default.
- W2902912384 hasOpenAccess W2902912384 @default.
- W2902912384 hasPrimaryLocation W29029123841 @default.
- W2902912384 hasRelatedWork W1500210016 @default.
- W2902912384 hasRelatedWork W1541319718 @default.
- W2902912384 hasRelatedWork W1559701296 @default.
- W2902912384 hasRelatedWork W1591100598 @default.
- W2902912384 hasRelatedWork W1594618647 @default.
- W2902912384 hasRelatedWork W1965919218 @default.
- W2902912384 hasRelatedWork W1986916307 @default.
- W2902912384 hasRelatedWork W2024747753 @default.
- W2902912384 hasRelatedWork W2026210405 @default.
- W2902912384 hasRelatedWork W2037065294 @default.
- W2902912384 hasRelatedWork W2055000959 @default.
- W2902912384 hasRelatedWork W2169848785 @default.
- W2902912384 hasRelatedWork W2171109283 @default.
- W2902912384 hasRelatedWork W2593445670 @default.
- W2902912384 hasRelatedWork W2963883886 @default.
- W2902912384 hasRelatedWork W2966483253 @default.
- W2902912384 hasRelatedWork W3006227290 @default.
- W2902912384 hasRelatedWork W3023282321 @default.
- W2902912384 hasRelatedWork W3210324533 @default.
- W2902912384 hasRelatedWork W1809597216 @default.
- W2902912384 isParatext "false" @default.
- W2902912384 isRetracted "false" @default.
- W2902912384 magId "2902912384" @default.
- W2902912384 workType "article" @default.