Matches in SemOpenAlex for { <https://semopenalex.org/work/W2902935427> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2902935427 abstract "This paper proposes a PM2.5 prediction system based on neuro-fuzzy neural networks which can be trained through historical recorded information. Time series training data are employed to forecast the PM2.5 values in the air in the future. Because of the uncertainty of the involved impact factors, fuzzy elements are added to the forecasting system. Our prediction system is a four-layer fuzzy neural network, consisting of the input layer, fuzzy layer, inference layer, and output layer. First of all, training data are partitioned into fuzzy clusters whose membership functions are characterized by the learned means and variances. Fuzzy rules are then extracted and constructed. Next, least squares optimization and gradient descent backpropagation are applied to refine the parameters of the fuzzy rules. The output of the system, indicating the forecast PM2.5, is derived through the fuzzy inference process. Experimental results are shown to demonstrate the effectiveness of the proposed forecasting system." @default.
- W2902935427 created "2018-12-11" @default.
- W2902935427 creator A5024403730 @default.
- W2902935427 creator A5036253440 @default.
- W2902935427 creator A5064729482 @default.
- W2902935427 creator A5086635268 @default.
- W2902935427 date "2018-12-01" @default.
- W2902935427 modified "2023-09-26" @default.
- W2902935427 title "Neuro-Fuzzy Network for PM2.5 Prediction" @default.
- W2902935427 cites W1933488938 @default.
- W2902935427 cites W2016199013 @default.
- W2902935427 cites W2057036781 @default.
- W2902935427 cites W2057481806 @default.
- W2902935427 cites W2067186191 @default.
- W2902935427 cites W2081107827 @default.
- W2902935427 cites W2089570034 @default.
- W2902935427 cites W2098725265 @default.
- W2902935427 cites W2130189616 @default.
- W2902935427 cites W2166604768 @default.
- W2902935427 cites W2793258900 @default.
- W2902935427 doi "https://doi.org/10.1007/978-3-030-04585-2_32" @default.
- W2902935427 hasPublicationYear "2018" @default.
- W2902935427 type Work @default.
- W2902935427 sameAs 2902935427 @default.
- W2902935427 citedByCount "1" @default.
- W2902935427 countsByYear W29029354272019 @default.
- W2902935427 crossrefType "book-chapter" @default.
- W2902935427 hasAuthorship W2902935427A5024403730 @default.
- W2902935427 hasAuthorship W2902935427A5036253440 @default.
- W2902935427 hasAuthorship W2902935427A5064729482 @default.
- W2902935427 hasAuthorship W2902935427A5086635268 @default.
- W2902935427 hasConcept C111919701 @default.
- W2902935427 hasConcept C119857082 @default.
- W2902935427 hasConcept C124101348 @default.
- W2902935427 hasConcept C151406439 @default.
- W2902935427 hasConcept C153258448 @default.
- W2902935427 hasConcept C154945302 @default.
- W2902935427 hasConcept C155032097 @default.
- W2902935427 hasConcept C178790620 @default.
- W2902935427 hasConcept C185592680 @default.
- W2902935427 hasConcept C186108316 @default.
- W2902935427 hasConcept C195975749 @default.
- W2902935427 hasConcept C2779227376 @default.
- W2902935427 hasConcept C29470771 @default.
- W2902935427 hasConcept C2987376176 @default.
- W2902935427 hasConcept C41008148 @default.
- W2902935427 hasConcept C42011625 @default.
- W2902935427 hasConcept C50644808 @default.
- W2902935427 hasConcept C58166 @default.
- W2902935427 hasConcept C98045186 @default.
- W2902935427 hasConceptScore W2902935427C111919701 @default.
- W2902935427 hasConceptScore W2902935427C119857082 @default.
- W2902935427 hasConceptScore W2902935427C124101348 @default.
- W2902935427 hasConceptScore W2902935427C151406439 @default.
- W2902935427 hasConceptScore W2902935427C153258448 @default.
- W2902935427 hasConceptScore W2902935427C154945302 @default.
- W2902935427 hasConceptScore W2902935427C155032097 @default.
- W2902935427 hasConceptScore W2902935427C178790620 @default.
- W2902935427 hasConceptScore W2902935427C185592680 @default.
- W2902935427 hasConceptScore W2902935427C186108316 @default.
- W2902935427 hasConceptScore W2902935427C195975749 @default.
- W2902935427 hasConceptScore W2902935427C2779227376 @default.
- W2902935427 hasConceptScore W2902935427C29470771 @default.
- W2902935427 hasConceptScore W2902935427C2987376176 @default.
- W2902935427 hasConceptScore W2902935427C41008148 @default.
- W2902935427 hasConceptScore W2902935427C42011625 @default.
- W2902935427 hasConceptScore W2902935427C50644808 @default.
- W2902935427 hasConceptScore W2902935427C58166 @default.
- W2902935427 hasConceptScore W2902935427C98045186 @default.
- W2902935427 hasLocation W29029354271 @default.
- W2902935427 hasOpenAccess W2902935427 @default.
- W2902935427 hasPrimaryLocation W29029354271 @default.
- W2902935427 hasRelatedWork W1486736978 @default.
- W2902935427 hasRelatedWork W1493687166 @default.
- W2902935427 hasRelatedWork W1547005731 @default.
- W2902935427 hasRelatedWork W1579904125 @default.
- W2902935427 hasRelatedWork W1806250593 @default.
- W2902935427 hasRelatedWork W1980160705 @default.
- W2902935427 hasRelatedWork W2012947808 @default.
- W2902935427 hasRelatedWork W2024218705 @default.
- W2902935427 hasRelatedWork W2044407225 @default.
- W2902935427 hasRelatedWork W2136523964 @default.
- W2902935427 hasRelatedWork W2141463274 @default.
- W2902935427 hasRelatedWork W2142343187 @default.
- W2902935427 hasRelatedWork W2144037185 @default.
- W2902935427 hasRelatedWork W2144632549 @default.
- W2902935427 hasRelatedWork W2168918360 @default.
- W2902935427 hasRelatedWork W2169814901 @default.
- W2902935427 hasRelatedWork W2345953659 @default.
- W2902935427 hasRelatedWork W2373730882 @default.
- W2902935427 hasRelatedWork W2586999812 @default.
- W2902935427 hasRelatedWork W912543597 @default.
- W2902935427 isParatext "false" @default.
- W2902935427 isRetracted "false" @default.
- W2902935427 magId "2902935427" @default.
- W2902935427 workType "book-chapter" @default.