Matches in SemOpenAlex for { <https://semopenalex.org/work/W2902960744> ?p ?o ?g. }
- W2902960744 abstract "This paper gives a rigorous analysis of trained Generalized Hamming Networks (GHN) proposed by [9] and discloses an interesting finding about GHNs, i.e., stacked convolution layers in a GHN is equivalent to a single yet wide convolution layer. The revealed equivalence, on the theoretical side, can be regarded as a constructive manifestation of the universal approximation theorem [7], [16]. In practice, it has profound and multi-fold implications. For network visualization, the constructed deep epitomes at each layer provide a visualization of network internal representation that does not rely on the input data. Moreover, deep epitomes allows the direct extraction of features in just one step, without resorting to regularized optimizations used in existing visualization tools." @default.
- W2902960744 created "2018-12-11" @default.
- W2902960744 creator A5034579880 @default.
- W2902960744 date "2018-08-01" @default.
- W2902960744 modified "2023-09-23" @default.
- W2902960744 title "Deep Epitome for Unravelling Generalized Hamming Network" @default.
- W2902960744 cites W1032448174 @default.
- W2902960744 cites W1578497686 @default.
- W2902960744 cites W1825675169 @default.
- W2902960744 cites W1988115241 @default.
- W2902960744 cites W1995341919 @default.
- W2902960744 cites W1996795963 @default.
- W2902960744 cites W2001555946 @default.
- W2902960744 cites W2083023271 @default.
- W2902960744 cites W2096768134 @default.
- W2902960744 cites W2100495367 @default.
- W2902960744 cites W2103496339 @default.
- W2902960744 cites W2137680370 @default.
- W2902960744 cites W2141614013 @default.
- W2902960744 cites W2152042401 @default.
- W2902960744 cites W2169488311 @default.
- W2902960744 cites W2190008860 @default.
- W2902960744 cites W2293078015 @default.
- W2902960744 cites W2293430386 @default.
- W2902960744 cites W2401231614 @default.
- W2902960744 cites W2474163600 @default.
- W2902960744 cites W2529194139 @default.
- W2902960744 cites W2593634001 @default.
- W2902960744 cites W2605409611 @default.
- W2902960744 cites W2613099550 @default.
- W2902960744 cites W2781044394 @default.
- W2902960744 cites W2912565176 @default.
- W2902960744 cites W2962697663 @default.
- W2902960744 cites W2962851944 @default.
- W2902960744 cites W2963197835 @default.
- W2902960744 cites W2963687836 @default.
- W2902960744 cites W2963723203 @default.
- W2902960744 cites W652199914 @default.
- W2902960744 cites W1998990477 @default.
- W2902960744 doi "https://doi.org/10.1109/icpr.2018.8545163" @default.
- W2902960744 hasPublicationYear "2018" @default.
- W2902960744 type Work @default.
- W2902960744 sameAs 2902960744 @default.
- W2902960744 citedByCount "0" @default.
- W2902960744 crossrefType "proceedings-article" @default.
- W2902960744 hasAuthorship W2902960744A5034579880 @default.
- W2902960744 hasConcept C108583219 @default.
- W2902960744 hasConcept C11413529 @default.
- W2902960744 hasConcept C118615104 @default.
- W2902960744 hasConcept C119857082 @default.
- W2902960744 hasConcept C154945302 @default.
- W2902960744 hasConcept C17744445 @default.
- W2902960744 hasConcept C193319292 @default.
- W2902960744 hasConcept C199360897 @default.
- W2902960744 hasConcept C199539241 @default.
- W2902960744 hasConcept C2775858994 @default.
- W2902960744 hasConcept C2776359362 @default.
- W2902960744 hasConcept C2778701210 @default.
- W2902960744 hasConcept C2780069185 @default.
- W2902960744 hasConcept C33923547 @default.
- W2902960744 hasConcept C36464697 @default.
- W2902960744 hasConcept C41008148 @default.
- W2902960744 hasConcept C45347329 @default.
- W2902960744 hasConcept C50644808 @default.
- W2902960744 hasConcept C80444323 @default.
- W2902960744 hasConcept C81363708 @default.
- W2902960744 hasConcept C94625758 @default.
- W2902960744 hasConcept C98045186 @default.
- W2902960744 hasConceptScore W2902960744C108583219 @default.
- W2902960744 hasConceptScore W2902960744C11413529 @default.
- W2902960744 hasConceptScore W2902960744C118615104 @default.
- W2902960744 hasConceptScore W2902960744C119857082 @default.
- W2902960744 hasConceptScore W2902960744C154945302 @default.
- W2902960744 hasConceptScore W2902960744C17744445 @default.
- W2902960744 hasConceptScore W2902960744C193319292 @default.
- W2902960744 hasConceptScore W2902960744C199360897 @default.
- W2902960744 hasConceptScore W2902960744C199539241 @default.
- W2902960744 hasConceptScore W2902960744C2775858994 @default.
- W2902960744 hasConceptScore W2902960744C2776359362 @default.
- W2902960744 hasConceptScore W2902960744C2778701210 @default.
- W2902960744 hasConceptScore W2902960744C2780069185 @default.
- W2902960744 hasConceptScore W2902960744C33923547 @default.
- W2902960744 hasConceptScore W2902960744C36464697 @default.
- W2902960744 hasConceptScore W2902960744C41008148 @default.
- W2902960744 hasConceptScore W2902960744C45347329 @default.
- W2902960744 hasConceptScore W2902960744C50644808 @default.
- W2902960744 hasConceptScore W2902960744C80444323 @default.
- W2902960744 hasConceptScore W2902960744C81363708 @default.
- W2902960744 hasConceptScore W2902960744C94625758 @default.
- W2902960744 hasConceptScore W2902960744C98045186 @default.
- W2902960744 hasLocation W29029607441 @default.
- W2902960744 hasOpenAccess W2902960744 @default.
- W2902960744 hasPrimaryLocation W29029607441 @default.
- W2902960744 hasRelatedWork W1875823719 @default.
- W2902960744 hasRelatedWork W2611552022 @default.
- W2902960744 hasRelatedWork W2746715616 @default.
- W2902960744 hasRelatedWork W2765651011 @default.
- W2902960744 hasRelatedWork W2890671550 @default.
- W2902960744 hasRelatedWork W2890836817 @default.
- W2902960744 hasRelatedWork W2899686093 @default.