Matches in SemOpenAlex for { <https://semopenalex.org/work/W2903034552> ?p ?o ?g. }
- W2903034552 abstract "Manifold embedding algorithms map high dimensional data, down to coordinates in a much lower dimensional space. One of the aims of the dimension reduction is to find the {em intrinsic coordinates} that describe the data manifold. However, the coordinates returned by the embedding algorithm are abstract coordinates. Finding their physical, domain related meaning is not formalized and left to the domain experts. This paper studies the problem of recovering the domain-specific meaning of the new low dimensional representation in a semi-automatic, principled fashion. We propose a method to explain embedding coordinates on a manifold as {em non-linear} compositions of functions from a user-defined dictionary. We show that this problem can be set up as a sparse {em linear Group Lasso} recovery problem, find sufficient recovery conditions, and demonstrate its effectiveness on data." @default.
- W2903034552 created "2018-12-11" @default.
- W2903034552 creator A5023568227 @default.
- W2903034552 creator A5036685075 @default.
- W2903034552 creator A5087665485 @default.
- W2903034552 date "2018-11-29" @default.
- W2903034552 modified "2023-10-17" @default.
- W2903034552 title "A regression approach for explaining manifold embedding coordinates." @default.
- W2903034552 cites W1557324374 @default.
- W2903034552 cites W1593436389 @default.
- W2903034552 cites W1964598071 @default.
- W2903034552 cites W1982729887 @default.
- W2903034552 cites W1986442311 @default.
- W2903034552 cites W2006554089 @default.
- W2903034552 cites W2020925091 @default.
- W2903034552 cites W2035820295 @default.
- W2903034552 cites W2053186076 @default.
- W2903034552 cites W2058971275 @default.
- W2903034552 cites W2063364217 @default.
- W2903034552 cites W2063532964 @default.
- W2903034552 cites W2065864578 @default.
- W2903034552 cites W2070991548 @default.
- W2903034552 cites W2077776048 @default.
- W2903034552 cites W2097462699 @default.
- W2903034552 cites W2103829273 @default.
- W2903034552 cites W2127300249 @default.
- W2903034552 cites W2132454969 @default.
- W2903034552 cites W2137937911 @default.
- W2903034552 cites W2138019504 @default.
- W2903034552 cites W2143420533 @default.
- W2903034552 cites W2146508075 @default.
- W2903034552 cites W2150940164 @default.
- W2903034552 cites W2153120110 @default.
- W2903034552 cites W2153228625 @default.
- W2903034552 cites W2155008293 @default.
- W2903034552 cites W2156718197 @default.
- W2903034552 cites W2171301742 @default.
- W2903034552 cites W2225729506 @default.
- W2903034552 cites W2239232218 @default.
- W2903034552 cites W2262407041 @default.
- W2903034552 cites W2293537266 @default.
- W2903034552 cites W2296319761 @default.
- W2903034552 cites W2506031578 @default.
- W2903034552 cites W2595314721 @default.
- W2903034552 cites W2750926321 @default.
- W2903034552 cites W2756374553 @default.
- W2903034552 cites W2770880161 @default.
- W2903034552 cites W2891612330 @default.
- W2903034552 cites W2952717234 @default.
- W2903034552 cites W2962824627 @default.
- W2903034552 cites W2964070509 @default.
- W2903034552 cites W2981906852 @default.
- W2903034552 cites W3124546987 @default.
- W2903034552 cites W623944003 @default.
- W2903034552 cites W2337490104 @default.
- W2903034552 hasPublicationYear "2018" @default.
- W2903034552 type Work @default.
- W2903034552 sameAs 2903034552 @default.
- W2903034552 citedByCount "5" @default.
- W2903034552 countsByYear W29030345522018 @default.
- W2903034552 countsByYear W29030345522020 @default.
- W2903034552 countsByYear W29030345522021 @default.
- W2903034552 crossrefType "posted-content" @default.
- W2903034552 hasAuthorship W2903034552A5023568227 @default.
- W2903034552 hasAuthorship W2903034552A5036685075 @default.
- W2903034552 hasAuthorship W2903034552A5087665485 @default.
- W2903034552 hasConcept C111919701 @default.
- W2903034552 hasConcept C11413529 @default.
- W2903034552 hasConcept C127413603 @default.
- W2903034552 hasConcept C134306372 @default.
- W2903034552 hasConcept C136364276 @default.
- W2903034552 hasConcept C151876577 @default.
- W2903034552 hasConcept C154945302 @default.
- W2903034552 hasConcept C15744967 @default.
- W2903034552 hasConcept C177264268 @default.
- W2903034552 hasConcept C17744445 @default.
- W2903034552 hasConcept C199360897 @default.
- W2903034552 hasConcept C199539241 @default.
- W2903034552 hasConcept C202444582 @default.
- W2903034552 hasConcept C206647686 @default.
- W2903034552 hasConcept C27451561 @default.
- W2903034552 hasConcept C2776359362 @default.
- W2903034552 hasConcept C2778572836 @default.
- W2903034552 hasConcept C2780876879 @default.
- W2903034552 hasConcept C2781310163 @default.
- W2903034552 hasConcept C33676613 @default.
- W2903034552 hasConcept C33923547 @default.
- W2903034552 hasConcept C36503486 @default.
- W2903034552 hasConcept C41008148 @default.
- W2903034552 hasConcept C41608201 @default.
- W2903034552 hasConcept C529865628 @default.
- W2903034552 hasConcept C542102704 @default.
- W2903034552 hasConcept C70518039 @default.
- W2903034552 hasConcept C78519656 @default.
- W2903034552 hasConcept C94625758 @default.
- W2903034552 hasConceptScore W2903034552C111919701 @default.
- W2903034552 hasConceptScore W2903034552C11413529 @default.
- W2903034552 hasConceptScore W2903034552C127413603 @default.
- W2903034552 hasConceptScore W2903034552C134306372 @default.
- W2903034552 hasConceptScore W2903034552C136364276 @default.