Matches in SemOpenAlex for { <https://semopenalex.org/work/W2903061308> ?p ?o ?g. }
- W2903061308 endingPage "516" @default.
- W2903061308 startingPage "505" @default.
- W2903061308 abstract "Purpose One limitation of experimental techniques for quantifying resolution and noise in detectors is that the measurement is made in a region‐of‐interest ( ROI ). With theoretical modeling, these properties can be measured at a point, allowing for quantification of spatial anisotropy. This paper calculates nonstationary transfer functions for amorphous selenium ( a ‐Se) detectors in breast imaging. We use this model to demonstrate the performance advantage of a “next‐generation” tomosynthesis ( NGT ) system, which is capable of x‐ray source motion with more degrees of freedom than a clinical tomosynthesis system. Methods Using Swank's formulation, the optical transfer function ( OTF ) and presampled noise power spectra ( NPS ) are determined based on the point spread function derived in Part 1. The modulation transfer function ( MTF ) is found from the normalized modulus of the OTF . To take into account the presence of digitization, the presampled NPS is convolved with a two‐dimensional comb function, for which the period along each direction is the reciprocal of the detector element size. The detective quantum efficiency ( DQE ) is then determined from combined knowledge of the OTF and NPS . Results First, the model is used to demonstrate the loss of image quality due to oblique x‐ray incidence. The MTF is calculated along various polar angles, corresponding to different orientations of the input frequency. The MTF is independent of the incidence angle if the polar angle is perpendicular to the ray incidence direction. However, along other polar angles, oblique incidence results in MTF degradation at high frequencies. The MTF degradation is most substantial along the ray incidence direction. Unlike the MTF , the normalized NPS ( NNPS ) is independent of the incidence angle. To measure the relative signal‐to‐noise, the DQE is also calculated. Oblique incidence yields high‐frequency DQE degradation, which is more pronounced than the MTF degradation. This arises because the DQE is proportionate with the square of the MTF . Ultimately, this model is used to evaluate how the image quality varies over the detector area. For various projection images, we calculate the variation in the incidence angle over this area. With the NGT system, the source can be positioned in such a way that this variation is minimized, and hence the DQE exhibits less anisotropy. To achieve this improvement in the image quality, the source needs to have a component of motion in the posteroanterior ( PA ) direction, which is perpendicular to the conventional direction of source motion in tomosynthesis. Conclusions In a ‐Se detectors, the DQE at high frequencies is degraded due to oblique incidence. The DQE degradation is more pronounced than the MTF degradation. This model is used to quantify the spatial variation in DQE over the detector area. The use of PA source motion is a strategy for minimizing this variation and thus improving the image quality." @default.
- W2903061308 created "2018-12-11" @default.
- W2903061308 creator A5048224254 @default.
- W2903061308 creator A5077763208 @default.
- W2903061308 date "2019-01-11" @default.
- W2903061308 modified "2023-10-15" @default.
- W2903061308 title "Nonstationary model of oblique x‐ray incidence in amorphous selenium detectors: II . Transfer functions" @default.
- W2903061308 cites W111039697 @default.
- W2903061308 cites W1532023978 @default.
- W2903061308 cites W1982849420 @default.
- W2903061308 cites W1999182710 @default.
- W2903061308 cites W2011383673 @default.
- W2903061308 cites W2013061888 @default.
- W2903061308 cites W2022754861 @default.
- W2903061308 cites W2027682319 @default.
- W2903061308 cites W2039168960 @default.
- W2903061308 cites W2051022268 @default.
- W2903061308 cites W2051622276 @default.
- W2903061308 cites W2083272316 @default.
- W2903061308 cites W2091087204 @default.
- W2903061308 cites W2093149632 @default.
- W2903061308 cites W2116943651 @default.
- W2903061308 cites W2124430732 @default.
- W2903061308 cites W2165408265 @default.
- W2903061308 cites W2169044888 @default.
- W2903061308 cites W2618675192 @default.
- W2903061308 cites W2789275611 @default.
- W2903061308 cites W2792665107 @default.
- W2903061308 cites W2902636380 @default.
- W2903061308 doi "https://doi.org/10.1002/mp.13312" @default.
- W2903061308 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6502710" @default.
- W2903061308 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30488455" @default.
- W2903061308 hasPublicationYear "2019" @default.
- W2903061308 type Work @default.
- W2903061308 sameAs 2903061308 @default.
- W2903061308 citedByCount "2" @default.
- W2903061308 countsByYear W29030613082020 @default.
- W2903061308 countsByYear W29030613082022 @default.
- W2903061308 crossrefType "journal-article" @default.
- W2903061308 hasAuthorship W2903061308A5048224254 @default.
- W2903061308 hasAuthorship W2903061308A5077763208 @default.
- W2903061308 hasBestOaLocation W29030613082 @default.
- W2903061308 hasConcept C100921725 @default.
- W2903061308 hasConcept C115961682 @default.
- W2903061308 hasConcept C120665830 @default.
- W2903061308 hasConcept C121332964 @default.
- W2903061308 hasConcept C121608353 @default.
- W2903061308 hasConcept C126322002 @default.
- W2903061308 hasConcept C147454874 @default.
- W2903061308 hasConcept C154945302 @default.
- W2903061308 hasConcept C175231954 @default.
- W2903061308 hasConcept C192562407 @default.
- W2903061308 hasConcept C205372480 @default.
- W2903061308 hasConcept C2780472235 @default.
- W2903061308 hasConcept C41008148 @default.
- W2903061308 hasConcept C530470458 @default.
- W2903061308 hasConcept C55020928 @default.
- W2903061308 hasConcept C69179731 @default.
- W2903061308 hasConcept C71924100 @default.
- W2903061308 hasConcept C86169459 @default.
- W2903061308 hasConcept C94915269 @default.
- W2903061308 hasConceptScore W2903061308C100921725 @default.
- W2903061308 hasConceptScore W2903061308C115961682 @default.
- W2903061308 hasConceptScore W2903061308C120665830 @default.
- W2903061308 hasConceptScore W2903061308C121332964 @default.
- W2903061308 hasConceptScore W2903061308C121608353 @default.
- W2903061308 hasConceptScore W2903061308C126322002 @default.
- W2903061308 hasConceptScore W2903061308C147454874 @default.
- W2903061308 hasConceptScore W2903061308C154945302 @default.
- W2903061308 hasConceptScore W2903061308C175231954 @default.
- W2903061308 hasConceptScore W2903061308C192562407 @default.
- W2903061308 hasConceptScore W2903061308C205372480 @default.
- W2903061308 hasConceptScore W2903061308C2780472235 @default.
- W2903061308 hasConceptScore W2903061308C41008148 @default.
- W2903061308 hasConceptScore W2903061308C530470458 @default.
- W2903061308 hasConceptScore W2903061308C55020928 @default.
- W2903061308 hasConceptScore W2903061308C69179731 @default.
- W2903061308 hasConceptScore W2903061308C71924100 @default.
- W2903061308 hasConceptScore W2903061308C86169459 @default.
- W2903061308 hasConceptScore W2903061308C94915269 @default.
- W2903061308 hasFunder F4320306133 @default.
- W2903061308 hasFunder F4320311413 @default.
- W2903061308 hasFunder F4320332161 @default.
- W2903061308 hasIssue "2" @default.
- W2903061308 hasLocation W29030613081 @default.
- W2903061308 hasLocation W29030613082 @default.
- W2903061308 hasLocation W29030613083 @default.
- W2903061308 hasLocation W29030613084 @default.
- W2903061308 hasOpenAccess W2903061308 @default.
- W2903061308 hasPrimaryLocation W29030613081 @default.
- W2903061308 hasRelatedWork W1811954857 @default.
- W2903061308 hasRelatedWork W2016630743 @default.
- W2903061308 hasRelatedWork W2046784679 @default.
- W2903061308 hasRelatedWork W2055077026 @default.
- W2903061308 hasRelatedWork W2073426596 @default.
- W2903061308 hasRelatedWork W2098070132 @default.
- W2903061308 hasRelatedWork W2316809334 @default.
- W2903061308 hasRelatedWork W2367024807 @default.