Matches in SemOpenAlex for { <https://semopenalex.org/work/W2903124382> ?p ?o ?g. }
- W2903124382 endingPage "689" @default.
- W2903124382 startingPage "651" @default.
- W2903124382 abstract "We introduce a novel Newton–Krylov (NK)-based fully implicit algorithm for solving fluid flows in a wide range of flow conditions—from variable density nearly incompressible to supersonic shock dynamics. The key enabling feature of our all-speed solver is the ability to efficiently solve conservation laws by choosing a set of independent variables that produce a well-conditioned Jacobian matrix for the linear iterations of the global nonlinear iterative solver. In particular, instead of choosing to discretize the conservative variables (density, momentum, total energy), which is traditionally used in Eulerian high-speed compressible fluid dynamics, we demonstrate superior performance by discretizing the primitive variables—pressure–velocity–temperature in the very low-Mach flow limits or density–velocity–temperature/entropy in the shock dynamics range. Moreover, our method allows us to avoid direct inversion of the mass matrix in discrete time derivatives, which is usually an additional source for stiffness, especially pronounced when going to very high-order schemes with non-orthogonal basis functions. Here, we show robust solutions obtained for discontinuous finite element discretization up to seventh-order accuracy. Another important aspect of the solution algorithm is the Advection Upstream Splitting Method (AUSM), adopted to compute numerical fluxes within our reconstructed discontinuous Galerkin (rDG) spatial discretization scheme. The use of the low-Mach modification of the hyperbolic flux operator is found to be necessary for enabling robust simulations of very stiff liquids and metals for Mach numbers below $$M=10^{-5}$$ , which is well known to be very computationally challenging for compressible solvers. We demonstrate that our fully implicit rDG-NK solver with the $${mathrm{AUSM}}^{+}$$ -up flux treatment produces efficient and high-resolution numerical solutions at all speeds, ranging from vanishing Mach numbers to transonic and supersonic, without substantial modifications of the solution procedures. (At high speed, we add limiting and use a simpler preconditioning of the Krylov solver.) Numerical examples include nearly incompressible constant-property flow past a backward-facing step with heat transfer, low-Mach variable-property channel flow of water at supercritical state, phase change and melt pool dynamics for laser spot welding and selective laser melting in additive manufacturing, and Mach 3 flow in a wind tunnel with a step." @default.
- W2903124382 created "2018-12-11" @default.
- W2903124382 creator A5000169813 @default.
- W2903124382 creator A5003287995 @default.
- W2903124382 creator A5021101286 @default.
- W2903124382 creator A5038467843 @default.
- W2903124382 creator A5039435998 @default.
- W2903124382 creator A5040980133 @default.
- W2903124382 creator A5047284311 @default.
- W2903124382 date "2018-11-28" @default.
- W2903124382 modified "2023-09-26" @default.
- W2903124382 title "High-order fully implicit solver for all-speed fluid dynamics" @default.
- W2903124382 cites W1506342804 @default.
- W2903124382 cites W1537224157 @default.
- W2903124382 cites W1569090332 @default.
- W2903124382 cites W1964861519 @default.
- W2903124382 cites W1967883853 @default.
- W2903124382 cites W1970113721 @default.
- W2903124382 cites W1976883414 @default.
- W2903124382 cites W1977519002 @default.
- W2903124382 cites W1980364889 @default.
- W2903124382 cites W1982075888 @default.
- W2903124382 cites W1982238045 @default.
- W2903124382 cites W1988315308 @default.
- W2903124382 cites W1989111170 @default.
- W2903124382 cites W1999125387 @default.
- W2903124382 cites W1999322550 @default.
- W2903124382 cites W1999399767 @default.
- W2903124382 cites W2000068428 @default.
- W2903124382 cites W2000596011 @default.
- W2903124382 cites W2000814863 @default.
- W2903124382 cites W2000927686 @default.
- W2903124382 cites W2009078692 @default.
- W2903124382 cites W2015574188 @default.
- W2903124382 cites W2018984157 @default.
- W2903124382 cites W2020026827 @default.
- W2903124382 cites W2024916353 @default.
- W2903124382 cites W2033160387 @default.
- W2903124382 cites W2043838070 @default.
- W2903124382 cites W2046430532 @default.
- W2903124382 cites W2048369486 @default.
- W2903124382 cites W2048776317 @default.
- W2903124382 cites W2049326089 @default.
- W2903124382 cites W2050369924 @default.
- W2903124382 cites W2054154406 @default.
- W2903124382 cites W2056307851 @default.
- W2903124382 cites W2058017892 @default.
- W2903124382 cites W2063566534 @default.
- W2903124382 cites W2068484625 @default.
- W2903124382 cites W2076077791 @default.
- W2903124382 cites W2079815562 @default.
- W2903124382 cites W2082772237 @default.
- W2903124382 cites W2084512831 @default.
- W2903124382 cites W2091507441 @default.
- W2903124382 cites W2092941459 @default.
- W2903124382 cites W2093428530 @default.
- W2903124382 cites W2095099357 @default.
- W2903124382 cites W2105071041 @default.
- W2903124382 cites W2105605926 @default.
- W2903124382 cites W2105672376 @default.
- W2903124382 cites W2108445995 @default.
- W2903124382 cites W2140153041 @default.
- W2903124382 cites W2150038589 @default.
- W2903124382 cites W2150954190 @default.
- W2903124382 cites W2169366690 @default.
- W2903124382 cites W2171303908 @default.
- W2903124382 cites W2304122885 @default.
- W2903124382 cites W2333511511 @default.
- W2903124382 cites W2498568334 @default.
- W2903124382 cites W2564018925 @default.
- W2903124382 cites W2766708469 @default.
- W2903124382 cites W2963814763 @default.
- W2903124382 cites W3014828337 @default.
- W2903124382 cites W3100422151 @default.
- W2903124382 cites W3158606570 @default.
- W2903124382 cites W3180065133 @default.
- W2903124382 cites W3185650111 @default.
- W2903124382 cites W4236619648 @default.
- W2903124382 cites W4244666963 @default.
- W2903124382 cites W4247863936 @default.
- W2903124382 doi "https://doi.org/10.1007/s00193-018-0871-8" @default.
- W2903124382 hasPublicationYear "2018" @default.
- W2903124382 type Work @default.
- W2903124382 sameAs 2903124382 @default.
- W2903124382 citedByCount "3" @default.
- W2903124382 countsByYear W29031243822019 @default.
- W2903124382 countsByYear W29031243822021 @default.
- W2903124382 countsByYear W29031243822022 @default.
- W2903124382 crossrefType "journal-article" @default.
- W2903124382 hasAuthorship W2903124382A5000169813 @default.
- W2903124382 hasAuthorship W2903124382A5003287995 @default.
- W2903124382 hasAuthorship W2903124382A5021101286 @default.
- W2903124382 hasAuthorship W2903124382A5038467843 @default.
- W2903124382 hasAuthorship W2903124382A5039435998 @default.
- W2903124382 hasAuthorship W2903124382A5040980133 @default.
- W2903124382 hasAuthorship W2903124382A5047284311 @default.
- W2903124382 hasConcept C121332964 @default.
- W2903124382 hasConcept C126255220 @default.