Matches in SemOpenAlex for { <https://semopenalex.org/work/W2903313013> ?p ?o ?g. }
- W2903313013 abstract "This work proves new results on the ability of binary Reed-Muller codes to decode from random errors and erasures. We obtain these results by proving improved bounds on the weight distribution of Reed-Muller codes of high degrees. Specifically, given weight $beta in (0,1)$ we prove an upper bound on the number of codewords of relative weight at most $beta$. We obtain new results in two different settings: for weights $beta < 1/2$ and for weights that are close to $1/2$. Our new bounds on the weight distribution imply that RM codes with $m$ variables and degree $gamma m$, for some explicit constant $gamma$, achieve capacity for random erasures (i.e. for the binary erasure channel) and for random errors (for the binary symmetric channel). Earlier, it was known that RM codes achieve capacity for the binary symmetric channel for degrees $r = o(m)$. For the binary erasure channel it was known that RM codes achieve capacity for degree $o(m)$ or $r in [m/2 pm O(sqrt{m})]$. Thus, our result provide a new range of parameters for which RM achieve capacity for these two well studied channels. In addition, our results imply that for every $epsilon > 0$ (in fact we can get up to $epsilon = Omegaleft(sqrt{frac{log m}{m}}right)$) RM codes of degree $r<(1/2-epsilon)m$ can correct a fraction of $1-o(1)$ random erasures with high probability. We also show that, information theoretically, such codes can handle a fraction of $1/2-o(1)$ random errors with high probability. Thus, for example, given noisy evaluations of a degree $0.499m$ polynomial, it is possible to interpolate it even if a random $0.499$ fraction of the evaluations were corrupted, with high probability. While the $o(1)$ terms are not the correct ones to ensure capacity, these results show that RM codes of such degrees are in some sense close to achieving capacity." @default.
- W2903313013 created "2018-12-11" @default.
- W2903313013 creator A5004182247 @default.
- W2903313013 creator A5016668075 @default.
- W2903313013 date "2018-11-29" @default.
- W2903313013 modified "2023-09-27" @default.
- W2903313013 title "On the Performance of Reed-Muller Codes with respect to Random Errors and Erasures" @default.
- W2903313013 cites W1545614041 @default.
- W2903313013 cites W1594962164 @default.
- W2903313013 cites W1595409123 @default.
- W2903313013 cites W171567834 @default.
- W2903313013 cites W1995875735 @default.
- W2903313013 cites W2004229705 @default.
- W2903313013 cites W2030633623 @default.
- W2903313013 cites W2032742263 @default.
- W2903313013 cites W2034681107 @default.
- W2903313013 cites W2034946612 @default.
- W2903313013 cites W2042993834 @default.
- W2903313013 cites W2098666392 @default.
- W2903313013 cites W2121417875 @default.
- W2903313013 cites W2141420453 @default.
- W2903313013 cites W2150307013 @default.
- W2903313013 cites W2150498905 @default.
- W2903313013 cites W2206295654 @default.
- W2903313013 cites W2589095445 @default.
- W2903313013 cites W2591190829 @default.
- W2903313013 cites W2809562493 @default.
- W2903313013 cites W2963330400 @default.
- W2903313013 cites W2989661724 @default.
- W2903313013 cites W1980073965 @default.
- W2903313013 hasPublicationYear "2018" @default.
- W2903313013 type Work @default.
- W2903313013 sameAs 2903313013 @default.
- W2903313013 citedByCount "2" @default.
- W2903313013 countsByYear W29033130132019 @default.
- W2903313013 countsByYear W29033130132020 @default.
- W2903313013 crossrefType "posted-content" @default.
- W2903313013 hasAuthorship W2903313013A5004182247 @default.
- W2903313013 hasAuthorship W2903313013A5016668075 @default.
- W2903313013 hasConcept C105795698 @default.
- W2903313013 hasConcept C11413529 @default.
- W2903313013 hasConcept C114614502 @default.
- W2903313013 hasConcept C118615104 @default.
- W2903313013 hasConcept C121332964 @default.
- W2903313013 hasConcept C122123141 @default.
- W2903313013 hasConcept C134306372 @default.
- W2903313013 hasConcept C149862233 @default.
- W2903313013 hasConcept C173988684 @default.
- W2903313013 hasConcept C179518139 @default.
- W2903313013 hasConcept C199360897 @default.
- W2903313013 hasConcept C24890656 @default.
- W2903313013 hasConcept C25432639 @default.
- W2903313013 hasConcept C2775997480 @default.
- W2903313013 hasConcept C2778790127 @default.
- W2903313013 hasConcept C33923547 @default.
- W2903313013 hasConcept C41008148 @default.
- W2903313013 hasConcept C48372109 @default.
- W2903313013 hasConcept C57273362 @default.
- W2903313013 hasConcept C63435697 @default.
- W2903313013 hasConcept C67692717 @default.
- W2903313013 hasConcept C77553402 @default.
- W2903313013 hasConcept C94375191 @default.
- W2903313013 hasConcept C97355855 @default.
- W2903313013 hasConcept C97744766 @default.
- W2903313013 hasConceptScore W2903313013C105795698 @default.
- W2903313013 hasConceptScore W2903313013C11413529 @default.
- W2903313013 hasConceptScore W2903313013C114614502 @default.
- W2903313013 hasConceptScore W2903313013C118615104 @default.
- W2903313013 hasConceptScore W2903313013C121332964 @default.
- W2903313013 hasConceptScore W2903313013C122123141 @default.
- W2903313013 hasConceptScore W2903313013C134306372 @default.
- W2903313013 hasConceptScore W2903313013C149862233 @default.
- W2903313013 hasConceptScore W2903313013C173988684 @default.
- W2903313013 hasConceptScore W2903313013C179518139 @default.
- W2903313013 hasConceptScore W2903313013C199360897 @default.
- W2903313013 hasConceptScore W2903313013C24890656 @default.
- W2903313013 hasConceptScore W2903313013C25432639 @default.
- W2903313013 hasConceptScore W2903313013C2775997480 @default.
- W2903313013 hasConceptScore W2903313013C2778790127 @default.
- W2903313013 hasConceptScore W2903313013C33923547 @default.
- W2903313013 hasConceptScore W2903313013C41008148 @default.
- W2903313013 hasConceptScore W2903313013C48372109 @default.
- W2903313013 hasConceptScore W2903313013C57273362 @default.
- W2903313013 hasConceptScore W2903313013C63435697 @default.
- W2903313013 hasConceptScore W2903313013C67692717 @default.
- W2903313013 hasConceptScore W2903313013C77553402 @default.
- W2903313013 hasConceptScore W2903313013C94375191 @default.
- W2903313013 hasConceptScore W2903313013C97355855 @default.
- W2903313013 hasConceptScore W2903313013C97744766 @default.
- W2903313013 hasLocation W29033130131 @default.
- W2903313013 hasOpenAccess W2903313013 @default.
- W2903313013 hasPrimaryLocation W29033130131 @default.
- W2903313013 hasRelatedWork W1761381505 @default.
- W2903313013 hasRelatedWork W1902733887 @default.
- W2903313013 hasRelatedWork W2001659896 @default.
- W2903313013 hasRelatedWork W2055060019 @default.
- W2903313013 hasRelatedWork W2086656773 @default.
- W2903313013 hasRelatedWork W2168382013 @default.
- W2903313013 hasRelatedWork W2169154778 @default.
- W2903313013 hasRelatedWork W2184877052 @default.