Matches in SemOpenAlex for { <https://semopenalex.org/work/W2903367443> ?p ?o ?g. }
- W2903367443 abstract "In this paper, we study the stochastic P-bifurcation problem for axially moving of a bistable viscoelastic beam with fractional derivatives of high order nonlinear terms under Gaussian white noise excitation. First, using the principle for minimum mean square error, we show that the fractional derivative term is equivalent to a linear combination of the damping force and restoring force, so that the original system can be simplified to an equivalent system. Second, we obtain the stationary Probability Density Function (PDF) of the system’s amplitude by stochastic averaging, and using singularity theory, we find the critical parametric condition for stochastic P-bifurcation of amplitude of the system. Finally, we analyze the types of the stationary PDF curves of the system qualitatively by choosing parameters corresponding to each region within the transition set curve. We verify the theoretical analysis and calculation of the transition set by showing the consistency of the numerical results obtained by Monte Carlo simulation with the analytical results. The method used in this paper directly guides the design of the fractional order viscoelastic material model to adjust the response of the system." @default.
- W2903367443 created "2018-12-11" @default.
- W2903367443 creator A5000424567 @default.
- W2903367443 creator A5006834711 @default.
- W2903367443 creator A5049364245 @default.
- W2903367443 creator A5087348900 @default.
- W2903367443 date "2018-12-02" @default.
- W2903367443 modified "2023-10-16" @default.
- W2903367443 title "Stochastic P-Bifurcation of a Bistable Viscoelastic Beam with Fractional Constitutive Relation under Gaussian White Noise" @default.
- W2903367443 cites W1966894698 @default.
- W2903367443 cites W1967494962 @default.
- W2903367443 cites W1969313263 @default.
- W2903367443 cites W1971075293 @default.
- W2903367443 cites W1971967884 @default.
- W2903367443 cites W1972514642 @default.
- W2903367443 cites W1981378325 @default.
- W2903367443 cites W1991765010 @default.
- W2903367443 cites W1993596300 @default.
- W2903367443 cites W2003897150 @default.
- W2903367443 cites W2004460765 @default.
- W2903367443 cites W2007469547 @default.
- W2903367443 cites W2016443935 @default.
- W2903367443 cites W2019630492 @default.
- W2903367443 cites W2023802538 @default.
- W2903367443 cites W2030947086 @default.
- W2903367443 cites W2031281774 @default.
- W2903367443 cites W2040612105 @default.
- W2903367443 cites W2047611001 @default.
- W2903367443 cites W2057729706 @default.
- W2903367443 cites W2058083012 @default.
- W2903367443 cites W2068601892 @default.
- W2903367443 cites W2069165340 @default.
- W2903367443 cites W2085472125 @default.
- W2903367443 cites W2089088849 @default.
- W2903367443 cites W2090502885 @default.
- W2903367443 cites W2094076403 @default.
- W2903367443 cites W2101705869 @default.
- W2903367443 cites W2104173178 @default.
- W2903367443 cites W2126528888 @default.
- W2903367443 cites W2130840186 @default.
- W2903367443 cites W2149598428 @default.
- W2903367443 cites W2152152827 @default.
- W2903367443 cites W2155504978 @default.
- W2903367443 cites W2329217018 @default.
- W2903367443 cites W2477921776 @default.
- W2903367443 cites W2506586217 @default.
- W2903367443 cites W2599581856 @default.
- W2903367443 cites W2727644093 @default.
- W2903367443 cites W2735777910 @default.
- W2903367443 cites W2753473610 @default.
- W2903367443 cites W2769197569 @default.
- W2903367443 cites W2784060493 @default.
- W2903367443 cites W2800511916 @default.
- W2903367443 cites W2805652522 @default.
- W2903367443 cites W2890612825 @default.
- W2903367443 cites W2894272561 @default.
- W2903367443 doi "https://doi.org/10.1155/2018/6935095" @default.
- W2903367443 hasPublicationYear "2018" @default.
- W2903367443 type Work @default.
- W2903367443 sameAs 2903367443 @default.
- W2903367443 citedByCount "0" @default.
- W2903367443 crossrefType "journal-article" @default.
- W2903367443 hasAuthorship W2903367443A5000424567 @default.
- W2903367443 hasAuthorship W2903367443A5006834711 @default.
- W2903367443 hasAuthorship W2903367443A5049364245 @default.
- W2903367443 hasAuthorship W2903367443A5087348900 @default.
- W2903367443 hasBestOaLocation W29033674431 @default.
- W2903367443 hasConcept C105795698 @default.
- W2903367443 hasConcept C112633086 @default.
- W2903367443 hasConcept C121332964 @default.
- W2903367443 hasConcept C121864883 @default.
- W2903367443 hasConcept C134306372 @default.
- W2903367443 hasConcept C154249771 @default.
- W2903367443 hasConcept C158622935 @default.
- W2903367443 hasConcept C186541917 @default.
- W2903367443 hasConcept C19499675 @default.
- W2903367443 hasConcept C197055811 @default.
- W2903367443 hasConcept C2781349735 @default.
- W2903367443 hasConcept C28826006 @default.
- W2903367443 hasConcept C33923547 @default.
- W2903367443 hasConcept C62520636 @default.
- W2903367443 hasConcept C97292510 @default.
- W2903367443 hasConcept C97355855 @default.
- W2903367443 hasConceptScore W2903367443C105795698 @default.
- W2903367443 hasConceptScore W2903367443C112633086 @default.
- W2903367443 hasConceptScore W2903367443C121332964 @default.
- W2903367443 hasConceptScore W2903367443C121864883 @default.
- W2903367443 hasConceptScore W2903367443C134306372 @default.
- W2903367443 hasConceptScore W2903367443C154249771 @default.
- W2903367443 hasConceptScore W2903367443C158622935 @default.
- W2903367443 hasConceptScore W2903367443C186541917 @default.
- W2903367443 hasConceptScore W2903367443C19499675 @default.
- W2903367443 hasConceptScore W2903367443C197055811 @default.
- W2903367443 hasConceptScore W2903367443C2781349735 @default.
- W2903367443 hasConceptScore W2903367443C28826006 @default.
- W2903367443 hasConceptScore W2903367443C33923547 @default.
- W2903367443 hasConceptScore W2903367443C62520636 @default.
- W2903367443 hasConceptScore W2903367443C97292510 @default.
- W2903367443 hasConceptScore W2903367443C97355855 @default.
- W2903367443 hasFunder F4320321001 @default.