Matches in SemOpenAlex for { <https://semopenalex.org/work/W2903497114> ?p ?o ?g. }
- W2903497114 abstract "Hashing based approximate nearest neighbor search has received considerable attention due to the demand of fast query for big multimedia data. Cross-modal hashing focuses on retrieval tasks across different modalities, which is more useful in practical applications. In this paper, we propose a novel two-stage cross-modal hashing method, referred to as Multi-Kernel Supervised Hashing with Graph Regularization (MKSRH). To better capture the essential attribute of original data, MKSRH first maps original data to a kernel space constructed by a linear combination of multiple kernel functions. Then the preliminary hash functions are learned using the Adaboost framework in the kernel space. To produce more accurate hash codes, the obtained hash function are then refined using a graph regularization based strategy. Experimental results on two canonical datasets show that MKSRH significantly outperforms than some typical cross-modal hashing methods, demonstrating the effectiveness and the superiority of the proposed approach." @default.
- W2903497114 created "2018-12-11" @default.
- W2903497114 creator A5031308675 @default.
- W2903497114 creator A5060613396 @default.
- W2903497114 creator A5088194505 @default.
- W2903497114 date "2018-08-01" @default.
- W2903497114 modified "2023-09-26" @default.
- W2903497114 title "Multi-Kernel Supervised Hashing with Graph Regularization for Cross-Modal Retrieval" @default.
- W2903497114 cites W1502916507 @default.
- W2903497114 cites W189447628 @default.
- W2903497114 cites W1922199343 @default.
- W2903497114 cites W1965825751 @default.
- W2903497114 cites W1969752030 @default.
- W2903497114 cites W1970055505 @default.
- W2903497114 cites W1976258951 @default.
- W2903497114 cites W199018803 @default.
- W2903497114 cites W1992371516 @default.
- W2903497114 cites W2029205712 @default.
- W2903497114 cites W2049993534 @default.
- W2903497114 cites W2076511276 @default.
- W2903497114 cites W2084363474 @default.
- W2903497114 cites W2086958058 @default.
- W2903497114 cites W2102663010 @default.
- W2903497114 cites W2134514757 @default.
- W2903497114 cites W2159373756 @default.
- W2903497114 cites W2162670057 @default.
- W2903497114 cites W2171790913 @default.
- W2903497114 cites W2203543769 @default.
- W2903497114 cites W2213253086 @default.
- W2903497114 cites W2293597654 @default.
- W2903497114 cites W2476624367 @default.
- W2903497114 cites W2509949649 @default.
- W2903497114 cites W2525781634 @default.
- W2903497114 cites W2534101049 @default.
- W2903497114 cites W2913932916 @default.
- W2903497114 doi "https://doi.org/10.1109/icpr.2018.8545392" @default.
- W2903497114 hasPublicationYear "2018" @default.
- W2903497114 type Work @default.
- W2903497114 sameAs 2903497114 @default.
- W2903497114 citedByCount "0" @default.
- W2903497114 crossrefType "proceedings-article" @default.
- W2903497114 hasAuthorship W2903497114A5031308675 @default.
- W2903497114 hasAuthorship W2903497114A5060613396 @default.
- W2903497114 hasAuthorship W2903497114A5088194505 @default.
- W2903497114 hasConcept C100595998 @default.
- W2903497114 hasConcept C114614502 @default.
- W2903497114 hasConcept C116058348 @default.
- W2903497114 hasConcept C122280245 @default.
- W2903497114 hasConcept C12267149 @default.
- W2903497114 hasConcept C122907437 @default.
- W2903497114 hasConcept C132525143 @default.
- W2903497114 hasConcept C133667856 @default.
- W2903497114 hasConcept C134517425 @default.
- W2903497114 hasConcept C138111711 @default.
- W2903497114 hasConcept C153180895 @default.
- W2903497114 hasConcept C154945302 @default.
- W2903497114 hasConcept C33923547 @default.
- W2903497114 hasConcept C38652104 @default.
- W2903497114 hasConcept C41008148 @default.
- W2903497114 hasConcept C67388219 @default.
- W2903497114 hasConcept C74193536 @default.
- W2903497114 hasConcept C80444323 @default.
- W2903497114 hasConcept C99138194 @default.
- W2903497114 hasConceptScore W2903497114C100595998 @default.
- W2903497114 hasConceptScore W2903497114C114614502 @default.
- W2903497114 hasConceptScore W2903497114C116058348 @default.
- W2903497114 hasConceptScore W2903497114C122280245 @default.
- W2903497114 hasConceptScore W2903497114C12267149 @default.
- W2903497114 hasConceptScore W2903497114C122907437 @default.
- W2903497114 hasConceptScore W2903497114C132525143 @default.
- W2903497114 hasConceptScore W2903497114C133667856 @default.
- W2903497114 hasConceptScore W2903497114C134517425 @default.
- W2903497114 hasConceptScore W2903497114C138111711 @default.
- W2903497114 hasConceptScore W2903497114C153180895 @default.
- W2903497114 hasConceptScore W2903497114C154945302 @default.
- W2903497114 hasConceptScore W2903497114C33923547 @default.
- W2903497114 hasConceptScore W2903497114C38652104 @default.
- W2903497114 hasConceptScore W2903497114C41008148 @default.
- W2903497114 hasConceptScore W2903497114C67388219 @default.
- W2903497114 hasConceptScore W2903497114C74193536 @default.
- W2903497114 hasConceptScore W2903497114C80444323 @default.
- W2903497114 hasConceptScore W2903497114C99138194 @default.
- W2903497114 hasLocation W29034971141 @default.
- W2903497114 hasOpenAccess W2903497114 @default.
- W2903497114 hasPrimaryLocation W29034971141 @default.
- W2903497114 hasRelatedWork W2088296667 @default.
- W2903497114 hasRelatedWork W2287105829 @default.
- W2903497114 hasRelatedWork W2296639790 @default.
- W2903497114 hasRelatedWork W2407501685 @default.
- W2903497114 hasRelatedWork W2425857666 @default.
- W2903497114 hasRelatedWork W2519631826 @default.
- W2903497114 hasRelatedWork W2525781634 @default.
- W2903497114 hasRelatedWork W2578909082 @default.
- W2903497114 hasRelatedWork W2593860907 @default.
- W2903497114 hasRelatedWork W2780644901 @default.
- W2903497114 hasRelatedWork W2800948734 @default.
- W2903497114 hasRelatedWork W2808432394 @default.
- W2903497114 hasRelatedWork W2889787664 @default.
- W2903497114 hasRelatedWork W2913639291 @default.
- W2903497114 hasRelatedWork W2941765879 @default.