Matches in SemOpenAlex for { <https://semopenalex.org/work/W2903546100> ?p ?o ?g. }
- W2903546100 endingPage "125109" @default.
- W2903546100 startingPage "125109" @default.
- W2903546100 abstract "In this article, we demonstrate the use of artificial neural networks as optimal maps which are utilized for convolution and deconvolution of coarse-grained fields to account for sub-grid scale turbulence effects. We demonstrate that an effective eddy-viscosity is predicted by our purely data-driven large eddy simulation framework without explicit utilization of phenomenological arguments. In addition, our data-driven framework precludes the knowledge of true sub-grid stress information during the training phase due to its focus on estimating an effective filter and its inverse so that grid-resolved variables may be related to direct numerical simulation data statistically. The proposed predictive framework is also combined with a statistical truncation mechanism for ensuring numerical realizability in an explicit formulation. Through this, we seek to unite structural and functional modeling strategies for modeling non-linear partial differential equations using reduced degrees of freedom. Both a priori and a posteriori results are shown for a two-dimensional decaying turbulence case in addition to a detailed description of validation and testing. A hyperparameter sensitivity study also shows that the proposed dual network framework simplifies learning complexity and is viable with exceedingly simple network architectures. Our findings indicate that the proposed framework approximates a robust and stable sub-grid closure which compares favorably to the Smagorinsky and Leith hypotheses for capturing the theoretical k−3 scaling in Kraichnan turbulence." @default.
- W2903546100 created "2018-12-11" @default.
- W2903546100 creator A5031727714 @default.
- W2903546100 creator A5032407979 @default.
- W2903546100 creator A5048243433 @default.
- W2903546100 creator A5085671233 @default.
- W2903546100 date "2018-12-01" @default.
- W2903546100 modified "2023-10-17" @default.
- W2903546100 title "Data-driven deconvolution for large eddy simulations of Kraichnan turbulence" @default.
- W2903546100 cites W1528439235 @default.
- W2903546100 cites W1879942928 @default.
- W2903546100 cites W1979769287 @default.
- W2903546100 cites W1981763632 @default.
- W2903546100 cites W1984006394 @default.
- W2903546100 cites W1994203821 @default.
- W2903546100 cites W1997126009 @default.
- W2903546100 cites W2043510278 @default.
- W2903546100 cites W2050962398 @default.
- W2903546100 cites W2054101073 @default.
- W2903546100 cites W2063284723 @default.
- W2903546100 cites W2071096591 @default.
- W2903546100 cites W2074447412 @default.
- W2903546100 cites W2074712603 @default.
- W2903546100 cites W2076110561 @default.
- W2903546100 cites W2082717960 @default.
- W2903546100 cites W2086219836 @default.
- W2903546100 cites W2091345137 @default.
- W2903546100 cites W2125283600 @default.
- W2903546100 cites W2131692411 @default.
- W2903546100 cites W2137983211 @default.
- W2903546100 cites W2154096272 @default.
- W2903546100 cites W2163863808 @default.
- W2903546100 cites W2168795429 @default.
- W2903546100 cites W2239232218 @default.
- W2903546100 cites W2314970799 @default.
- W2903546100 cites W2335486003 @default.
- W2903546100 cites W2344479506 @default.
- W2903546100 cites W2490045648 @default.
- W2903546100 cites W2515586274 @default.
- W2903546100 cites W2533800772 @default.
- W2903546100 cites W2534240011 @default.
- W2903546100 cites W2553720576 @default.
- W2903546100 cites W2573798107 @default.
- W2903546100 cites W2573864470 @default.
- W2903546100 cites W2585298970 @default.
- W2903546100 cites W2615178826 @default.
- W2903546100 cites W2618068449 @default.
- W2903546100 cites W2624142016 @default.
- W2903546100 cites W2735456401 @default.
- W2903546100 cites W2745110207 @default.
- W2903546100 cites W2766872946 @default.
- W2903546100 cites W2787410185 @default.
- W2903546100 cites W2792978536 @default.
- W2903546100 cites W2794371820 @default.
- W2903546100 cites W2795982117 @default.
- W2903546100 cites W2801938748 @default.
- W2903546100 cites W2810437889 @default.
- W2903546100 cites W2890550410 @default.
- W2903546100 cites W2962757926 @default.
- W2903546100 cites W3098093095 @default.
- W2903546100 cites W3099591196 @default.
- W2903546100 cites W3101316902 @default.
- W2903546100 cites W3101544609 @default.
- W2903546100 cites W3105245152 @default.
- W2903546100 cites W3105469151 @default.
- W2903546100 cites W3106241571 @default.
- W2903546100 cites W3131152791 @default.
- W2903546100 cites W4212837215 @default.
- W2903546100 cites W4243066586 @default.
- W2903546100 cites W4299534369 @default.
- W2903546100 doi "https://doi.org/10.1063/1.5079582" @default.
- W2903546100 hasPublicationYear "2018" @default.
- W2903546100 type Work @default.
- W2903546100 sameAs 2903546100 @default.
- W2903546100 citedByCount "77" @default.
- W2903546100 countsByYear W29035461002019 @default.
- W2903546100 countsByYear W29035461002020 @default.
- W2903546100 countsByYear W29035461002021 @default.
- W2903546100 countsByYear W29035461002022 @default.
- W2903546100 countsByYear W29035461002023 @default.
- W2903546100 crossrefType "journal-article" @default.
- W2903546100 hasAuthorship W2903546100A5031727714 @default.
- W2903546100 hasAuthorship W2903546100A5032407979 @default.
- W2903546100 hasAuthorship W2903546100A5048243433 @default.
- W2903546100 hasAuthorship W2903546100A5085671233 @default.
- W2903546100 hasBestOaLocation W29035461002 @default.
- W2903546100 hasConcept C106131492 @default.
- W2903546100 hasConcept C111472728 @default.
- W2903546100 hasConcept C11413529 @default.
- W2903546100 hasConcept C121332964 @default.
- W2903546100 hasConcept C121448008 @default.
- W2903546100 hasConcept C121864883 @default.
- W2903546100 hasConcept C127413603 @default.
- W2903546100 hasConcept C138885662 @default.
- W2903546100 hasConcept C174576160 @default.
- W2903546100 hasConcept C187691185 @default.
- W2903546100 hasConcept C196558001 @default.
- W2903546100 hasConcept C204573209 @default.