Matches in SemOpenAlex for { <https://semopenalex.org/work/W2903597970> ?p ?o ?g. }
- W2903597970 abstract "Iron oxide copper-gold (IOCG) and Kiruna-type iron oxide-apatite (IOA) deposits are commonly spatially and temporally associated with one another, and with coeval magmatism. Here, we use trace element concentrations in magnetite and pyrite, Fe and O stable isotope abundances of magnetite and hematite, H isotopes of magnetite and actinolite, and Re-Os systematics of magnetite from the Los Colorados Kiruna-type IOA deposit in the Chilean iron belt to develop a new genetic model that explains IOCG and IOA deposits as a continuum produced by a combination of igneous and magmatic-hydrothermal processes. The concentrations of [Al + Mn] and [Ti + V] are highest in magnetite cores and decrease systematically from core to rim, consistent with growth of magnetite cores from a silicate melt, and rims from a cooling magmatic-hydrothermal fluid. Almost all bulk δ 18 O values in magnetite are within the range of 0 to 5‰, and bulk δ 56 Fe for magnetite are within the range 0 to 0.8‰ of Fe isotopes, both of which indicate a magmatic source for O and Fe. The values of δ 18 O and δD for actinolite, which is paragenetically equivalent to magnetite, are, respectively, 6.46 ± 0.56 and-59.3 ± 1.7‰, indicative of a mantle source. Pyrite grains consistently yield Co/Ni ratios that exceed unity, and imply precipitation of pyrite from an ore fluid evolved from an intermediate to mafic magma. The calculated initial 187 Os/ 188 Os ratio (Osi) for magnetite from Los Colorados is 1.2, overlapping Osi values for Chilean porphyry-Cu deposits, and consistent with an origin from juvenile magma. Together, the data are consistent with a geologic model wherein (1) magnetite microlites crystallize as a near-liquidus phase from an intermediate to mafic silicate melt; (2) magnetite microlites serve as nucleation sites for fluid bubbles and promote volatile saturation of the melt; (3) the volatile phase coalesces and encapsulates magnetite microlites to form a magnetite-fluid suspension; (4) the suspension scavenges Fe, Cu, Au, S, Cl, P, and rare earth elements (REE) from the melt; (5) the suspension ascends from the host magma during regional extension; (6) as the suspension ascends, originally igneous mag-netite microlites grow larger by sourcing Fe from the cooling magmatic-hydrothermal fluid; (7) in deep-seated crustal faults, magnetite crystals are deposited to form a Kiruna-type IOA deposit due to decompression of the magnetite-fluid suspension; and (8) the further ascending fluid transports Fe, Cu, Au, and S to shallower levels or lateral distal zones of the system where hematite, magnetite, and sulfides precipitate to form IOCG deposits. The model explains the globally observed temporal and spatial relationship between magmatism and IOA and IOCG deposits, and provides a valuable conceptual framework to define exploration strategies." @default.
- W2903597970 created "2018-12-22" @default.
- W2903597970 creator A5009332920 @default.
- W2903597970 creator A5017321545 @default.
- W2903597970 creator A5022432037 @default.
- W2903597970 creator A5030224049 @default.
- W2903597970 creator A5031688571 @default.
- W2903597970 creator A5034850692 @default.
- W2903597970 creator A5077134714 @default.
- W2903597970 date "2018-01-01" @default.
- W2903597970 modified "2023-09-26" @default.
- W2903597970 title "Kiruna-Type Iron Oxide-Apatite (IOA) and Iron Oxide Copper-Gold (IOCG) Deposits Form by a Combination of Igneous and Magmatic-Hydrothermal Processes: Evidence from the Chilean Iron Belt" @default.
- W2903597970 cites W1533954209 @default.
- W2903597970 cites W1999726370 @default.
- W2903597970 cites W2008369242 @default.
- W2903597970 cites W2022815210 @default.
- W2903597970 cites W2032036010 @default.
- W2903597970 cites W2052210533 @default.
- W2903597970 cites W2052256103 @default.
- W2903597970 cites W2053674395 @default.
- W2903597970 cites W2063013976 @default.
- W2903597970 cites W2064011150 @default.
- W2903597970 cites W2065456830 @default.
- W2903597970 cites W2078305653 @default.
- W2903597970 cites W2081910176 @default.
- W2903597970 cites W2091971395 @default.
- W2903597970 cites W2135961904 @default.
- W2903597970 cites W2138522501 @default.
- W2903597970 cites W2140848998 @default.
- W2903597970 cites W2167893737 @default.
- W2903597970 cites W2170700608 @default.
- W2903597970 cites W2170729243 @default.
- W2903597970 cites W2170969682 @default.
- W2903597970 cites W224773683 @default.
- W2903597970 cites W2330293686 @default.
- W2903597970 cites W2331361364 @default.
- W2903597970 cites W2337753537 @default.
- W2903597970 cites W2340517067 @default.
- W2903597970 cites W2342417423 @default.
- W2903597970 cites W2413417438 @default.
- W2903597970 cites W2605648615 @default.
- W2903597970 cites W2765434216 @default.
- W2903597970 cites W2798169819 @default.
- W2903597970 cites W2912020849 @default.
- W2903597970 cites W2981296142 @default.
- W2903597970 cites W2984828176 @default.
- W2903597970 cites W43064759 @default.
- W2903597970 cites W3128513910 @default.
- W2903597970 doi "https://doi.org/10.5382/sp.21.06" @default.
- W2903597970 hasPublicationYear "2018" @default.
- W2903597970 type Work @default.
- W2903597970 sameAs 2903597970 @default.
- W2903597970 citedByCount "18" @default.
- W2903597970 countsByYear W29035979702018 @default.
- W2903597970 countsByYear W29035979702019 @default.
- W2903597970 countsByYear W29035979702020 @default.
- W2903597970 countsByYear W29035979702021 @default.
- W2903597970 countsByYear W29035979702022 @default.
- W2903597970 countsByYear W29035979702023 @default.
- W2903597970 crossrefType "book-chapter" @default.
- W2903597970 hasAuthorship W2903597970A5009332920 @default.
- W2903597970 hasAuthorship W2903597970A5017321545 @default.
- W2903597970 hasAuthorship W2903597970A5022432037 @default.
- W2903597970 hasAuthorship W2903597970A5030224049 @default.
- W2903597970 hasAuthorship W2903597970A5031688571 @default.
- W2903597970 hasAuthorship W2903597970A5034850692 @default.
- W2903597970 hasAuthorship W2903597970A5077134714 @default.
- W2903597970 hasBestOaLocation W29035979702 @default.
- W2903597970 hasConcept C127313418 @default.
- W2903597970 hasConcept C140167661 @default.
- W2903597970 hasConcept C151730666 @default.
- W2903597970 hasConcept C156622251 @default.
- W2903597970 hasConcept C17409809 @default.
- W2903597970 hasConcept C191897082 @default.
- W2903597970 hasConcept C192562407 @default.
- W2903597970 hasConcept C2776152364 @default.
- W2903597970 hasConcept C2777697756 @default.
- W2903597970 hasConcept C2777746296 @default.
- W2903597970 hasConcept C2777781897 @default.
- W2903597970 hasConcept C2779851234 @default.
- W2903597970 hasConcept C42787717 @default.
- W2903597970 hasConceptScore W2903597970C127313418 @default.
- W2903597970 hasConceptScore W2903597970C140167661 @default.
- W2903597970 hasConceptScore W2903597970C151730666 @default.
- W2903597970 hasConceptScore W2903597970C156622251 @default.
- W2903597970 hasConceptScore W2903597970C17409809 @default.
- W2903597970 hasConceptScore W2903597970C191897082 @default.
- W2903597970 hasConceptScore W2903597970C192562407 @default.
- W2903597970 hasConceptScore W2903597970C2776152364 @default.
- W2903597970 hasConceptScore W2903597970C2777697756 @default.
- W2903597970 hasConceptScore W2903597970C2777746296 @default.
- W2903597970 hasConceptScore W2903597970C2777781897 @default.
- W2903597970 hasConceptScore W2903597970C2779851234 @default.
- W2903597970 hasConceptScore W2903597970C42787717 @default.
- W2903597970 hasLocation W29035979701 @default.
- W2903597970 hasLocation W29035979702 @default.
- W2903597970 hasOpenAccess W2903597970 @default.
- W2903597970 hasPrimaryLocation W29035979701 @default.
- W2903597970 hasRelatedWork W1225814248 @default.
- W2903597970 hasRelatedWork W1972533521 @default.