Matches in SemOpenAlex for { <https://semopenalex.org/work/W2903669917> ?p ?o ?g. }
- W2903669917 endingPage "412" @default.
- W2903669917 startingPage "401" @default.
- W2903669917 abstract "The urban impervious surface has been recognized as a key quantifiable indicator in assessing urbanization and its environmental impacts. Adopting deep learning technologies, this study proposes an approach of three-dimensional convolutional neural networks (3D CNNs) to extract impervious surfaces from the WorldView-2 and airborne LiDAR datasets. The influences of different 3D CNN parameters on impervious surface extraction are evaluated. In an effort to reduce the limitations from single sensor data, this study also explores the synergistic use of multi-source remote sensing datasets for delineating urban impervious surfaces. Results indicate that our proposed 3D CNN approach has a great potential and better performance on impervious surface extraction, with an overall accuracy higher than 93.00% and the overall kappa value above 0.89. Compared with the commonly applied pixel-based support vector machine classifier, our proposed 3D CNN approach takes advantage not only of the pixel-level spatial and spectral information, but also of texture and feature maps through multi-scale convolutional processes, which enhance the extraction of impervious surfaces. While image analysis is facing large challenges in a rapidly developing big data era, our proposed 3D CNNs will become an effective approach for improved urban impervious surface extraction." @default.
- W2903669917 created "2018-12-22" @default.
- W2903669917 creator A5037326197 @default.
- W2903669917 creator A5078548585 @default.
- W2903669917 creator A5081608979 @default.
- W2903669917 creator A5089686894 @default.
- W2903669917 date "2018-12-07" @default.
- W2903669917 modified "2023-10-12" @default.
- W2903669917 title "Extracting Urban Impervious Surface from WorldView-2 and Airborne LiDAR Data Using 3D Convolutional Neural Networks" @default.
- W2903669917 cites W1522734439 @default.
- W2903669917 cites W1963882359 @default.
- W2903669917 cites W1983364832 @default.
- W2903669917 cites W1988065987 @default.
- W2903669917 cites W2038083647 @default.
- W2903669917 cites W2043300851 @default.
- W2903669917 cites W2089659256 @default.
- W2903669917 cites W2092075602 @default.
- W2903669917 cites W2100495367 @default.
- W2903669917 cites W2147258346 @default.
- W2903669917 cites W2149462409 @default.
- W2903669917 cites W2248723555 @default.
- W2903669917 cites W2282903029 @default.
- W2903669917 cites W2292481059 @default.
- W2903669917 cites W2302273879 @default.
- W2903669917 cites W2304190103 @default.
- W2903669917 cites W2314029052 @default.
- W2903669917 cites W2334987422 @default.
- W2903669917 cites W2341130385 @default.
- W2903669917 cites W2410591237 @default.
- W2903669917 cites W2512351403 @default.
- W2903669917 cites W2534138585 @default.
- W2903669917 cites W2538244214 @default.
- W2903669917 cites W2604086375 @default.
- W2903669917 cites W2622537370 @default.
- W2903669917 cites W2626606351 @default.
- W2903669917 cites W2755708231 @default.
- W2903669917 cites W2789453329 @default.
- W2903669917 cites W2791426363 @default.
- W2903669917 cites W2792059834 @default.
- W2903669917 cites W2799620231 @default.
- W2903669917 cites W2799735832 @default.
- W2903669917 cites W2884474920 @default.
- W2903669917 cites W2886666371 @default.
- W2903669917 cites W2919115771 @default.
- W2903669917 cites W4248710273 @default.
- W2903669917 doi "https://doi.org/10.1007/s12524-018-0917-5" @default.
- W2903669917 hasPublicationYear "2018" @default.
- W2903669917 type Work @default.
- W2903669917 sameAs 2903669917 @default.
- W2903669917 citedByCount "25" @default.
- W2903669917 countsByYear W29036699172019 @default.
- W2903669917 countsByYear W29036699172020 @default.
- W2903669917 countsByYear W29036699172021 @default.
- W2903669917 countsByYear W29036699172022 @default.
- W2903669917 countsByYear W29036699172023 @default.
- W2903669917 crossrefType "journal-article" @default.
- W2903669917 hasAuthorship W2903669917A5037326197 @default.
- W2903669917 hasAuthorship W2903669917A5078548585 @default.
- W2903669917 hasAuthorship W2903669917A5081608979 @default.
- W2903669917 hasAuthorship W2903669917A5089686894 @default.
- W2903669917 hasBestOaLocation W29036699171 @default.
- W2903669917 hasConcept C154945302 @default.
- W2903669917 hasConcept C18903297 @default.
- W2903669917 hasConcept C205649164 @default.
- W2903669917 hasConcept C2668921 @default.
- W2903669917 hasConcept C39432304 @default.
- W2903669917 hasConcept C41008148 @default.
- W2903669917 hasConcept C51399673 @default.
- W2903669917 hasConcept C58640448 @default.
- W2903669917 hasConcept C62649853 @default.
- W2903669917 hasConcept C81363708 @default.
- W2903669917 hasConcept C86803240 @default.
- W2903669917 hasConceptScore W2903669917C154945302 @default.
- W2903669917 hasConceptScore W2903669917C18903297 @default.
- W2903669917 hasConceptScore W2903669917C205649164 @default.
- W2903669917 hasConceptScore W2903669917C2668921 @default.
- W2903669917 hasConceptScore W2903669917C39432304 @default.
- W2903669917 hasConceptScore W2903669917C41008148 @default.
- W2903669917 hasConceptScore W2903669917C51399673 @default.
- W2903669917 hasConceptScore W2903669917C58640448 @default.
- W2903669917 hasConceptScore W2903669917C62649853 @default.
- W2903669917 hasConceptScore W2903669917C81363708 @default.
- W2903669917 hasConceptScore W2903669917C86803240 @default.
- W2903669917 hasFunder F4320321001 @default.
- W2903669917 hasFunder F4320335777 @default.
- W2903669917 hasIssue "3" @default.
- W2903669917 hasLocation W29036699171 @default.
- W2903669917 hasOpenAccess W2903669917 @default.
- W2903669917 hasPrimaryLocation W29036699171 @default.
- W2903669917 hasRelatedWork W117302946 @default.
- W2903669917 hasRelatedWork W2158640547 @default.
- W2903669917 hasRelatedWork W2188487481 @default.
- W2903669917 hasRelatedWork W2334034597 @default.
- W2903669917 hasRelatedWork W2588878865 @default.
- W2903669917 hasRelatedWork W2807946621 @default.
- W2903669917 hasRelatedWork W2899084033 @default.
- W2903669917 hasRelatedWork W2972471089 @default.
- W2903669917 hasRelatedWork W3210231276 @default.