Matches in SemOpenAlex for { <https://semopenalex.org/work/W2903674682> ?p ?o ?g. }
- W2903674682 endingPage "427" @default.
- W2903674682 startingPage "410" @default.
- W2903674682 abstract "Facies analysis is crucial for reservoir evaluation because the distribution of facies has significant impact on reservoir properties. Artificial Neural Networks (ANN) are a powerful way to use facies interpretations from core to determine equivalent facies from wireline logs in uncored wells. However, ANN do not incorporate information that relates to facies successions. This has limited the ability to effectively use facies information derived from logs alone in reservoir modelling, especially at the regional scale where data is often sparse, clustered, or incomplete. In this study, based on observations of 8 cored wells with a total thickness of ∼2000 m, 20 core facies were defined that range from 0.22 m to 11.56 m thick. Facies were based on grain size, sedimentary structures, and ichnological characteristics; Each facies corresponds to a distinct depositional sub-environment within the broader context of a large nearshore to shallow marine system. It was essential that these facies were incorporated into reservoir models to accurately map the distribution of reservoir and seal geobodies for CO2 storage assessment in the Surat Basin, Australia. However, core data are few and far between in the Surat Basin. To use core-defined facies in the absence of core, six wireline log parameters – gamma ray, density, sonic, neutron, photoelectric factor, and deep resistivity were plotted in multidimensional space and examined using Linear Discriminator Analysis. Combined with model recognition and Fisher Canonical Discriminance, the 20 core facies were simplified into 10 representative wireline log facies (WLF) with unique petrophysical parameters. We then used the Markov Chains Approach (MCA) to determine the significance of vertical facies transitions, which supported the interpretation that facies group into 5 distinct associations: (1) channel-levee complex; (2) lower delta plain; (3) subaqueous delta; (4) shoreface and; (5) tidal flats and channels. Based on the facies analysis and statistical classification, Multilayer Perceptron Classifier, a type of neural network method was applied using a training set of three cored wells that had all 6 wireline log data and using the facies successions determined from the MCA. Results show that the accuracy of WLF prediction ranges from 66% to 99% (ca. 83%). The accuracy of facies recognition decreased step wise with a decreasing number of logs as input data, such that when only gamma ray, density, deep resistivity, and sonic were used to train neural networks the accuracy dropped to between 45 and 98% (ca. 67%), depending upon the facies. This was considered the lowest acceptable threshold of accuracy for facies determination for input into reservoir models for carbon capture and storage. The results of this study show that sedimentary facies can be accurately predicted for uncored intervals in the Precipice Sandstone and Evergreen Formation to improve facies mapping and static reservoir modelling. Additionally, wireline log facies are helpful for interpreting Lower Jurassic stratigraphy, depositional setting, and basin evolution in the Mesozoic of Eastern Australia." @default.
- W2903674682 created "2018-12-22" @default.
- W2903674682 creator A5011375632 @default.
- W2903674682 creator A5027013375 @default.
- W2903674682 creator A5046641260 @default.
- W2903674682 creator A5057221533 @default.
- W2903674682 creator A5089277700 @default.
- W2903674682 date "2019-03-01" @default.
- W2903674682 modified "2023-10-03" @default.
- W2903674682 title "Using neural networks and the Markov Chain approach for facies analysis and prediction from well logs in the Precipice Sandstone and Evergreen Formation, Surat Basin, Australia" @default.
- W2903674682 cites W1968670931 @default.
- W2903674682 cites W1977491352 @default.
- W2903674682 cites W1993192109 @default.
- W2903674682 cites W1993361500 @default.
- W2903674682 cites W1998297833 @default.
- W2903674682 cites W2000626438 @default.
- W2903674682 cites W2000662987 @default.
- W2903674682 cites W2003648515 @default.
- W2903674682 cites W2006796903 @default.
- W2903674682 cites W2007478378 @default.
- W2903674682 cites W2010582339 @default.
- W2903674682 cites W2011651911 @default.
- W2903674682 cites W2014220346 @default.
- W2903674682 cites W2018118706 @default.
- W2903674682 cites W2032277867 @default.
- W2903674682 cites W2039226002 @default.
- W2903674682 cites W2051787883 @default.
- W2903674682 cites W2064188956 @default.
- W2903674682 cites W2068223601 @default.
- W2903674682 cites W2068429641 @default.
- W2903674682 cites W2074009903 @default.
- W2903674682 cites W2074239285 @default.
- W2903674682 cites W2075198493 @default.
- W2903674682 cites W2076300585 @default.
- W2903674682 cites W2085333998 @default.
- W2903674682 cites W2089856672 @default.
- W2903674682 cites W2100963625 @default.
- W2903674682 cites W2104778597 @default.
- W2903674682 cites W2110072574 @default.
- W2903674682 cites W2114327617 @default.
- W2903674682 cites W2126878870 @default.
- W2903674682 cites W2129353860 @default.
- W2903674682 cites W2140928061 @default.
- W2903674682 cites W2164290747 @default.
- W2903674682 cites W2166578139 @default.
- W2903674682 cites W2168741563 @default.
- W2903674682 cites W2401960364 @default.
- W2903674682 cites W2589226272 @default.
- W2903674682 cites W2684577149 @default.
- W2903674682 cites W2772773292 @default.
- W2903674682 cites W2802158029 @default.
- W2903674682 cites W787938927 @default.
- W2903674682 cites W2083590565 @default.
- W2903674682 doi "https://doi.org/10.1016/j.marpetgeo.2018.12.022" @default.
- W2903674682 hasPublicationYear "2019" @default.
- W2903674682 type Work @default.
- W2903674682 sameAs 2903674682 @default.
- W2903674682 citedByCount "31" @default.
- W2903674682 countsByYear W29036746822019 @default.
- W2903674682 countsByYear W29036746822020 @default.
- W2903674682 countsByYear W29036746822021 @default.
- W2903674682 countsByYear W29036746822022 @default.
- W2903674682 countsByYear W29036746822023 @default.
- W2903674682 crossrefType "journal-article" @default.
- W2903674682 hasAuthorship W2903674682A5011375632 @default.
- W2903674682 hasAuthorship W2903674682A5027013375 @default.
- W2903674682 hasAuthorship W2903674682A5046641260 @default.
- W2903674682 hasAuthorship W2903674682A5057221533 @default.
- W2903674682 hasAuthorship W2903674682A5089277700 @default.
- W2903674682 hasConcept C109007969 @default.
- W2903674682 hasConcept C114793014 @default.
- W2903674682 hasConcept C126753816 @default.
- W2903674682 hasConcept C127313418 @default.
- W2903674682 hasConcept C146588470 @default.
- W2903674682 hasConcept C151730666 @default.
- W2903674682 hasConcept C187320778 @default.
- W2903674682 hasConcept C2779343474 @default.
- W2903674682 hasConcept C35817400 @default.
- W2903674682 hasConcept C46293882 @default.
- W2903674682 hasConcept C5900021 @default.
- W2903674682 hasConcept C6648577 @default.
- W2903674682 hasConcept C8058405 @default.
- W2903674682 hasConceptScore W2903674682C109007969 @default.
- W2903674682 hasConceptScore W2903674682C114793014 @default.
- W2903674682 hasConceptScore W2903674682C126753816 @default.
- W2903674682 hasConceptScore W2903674682C127313418 @default.
- W2903674682 hasConceptScore W2903674682C146588470 @default.
- W2903674682 hasConceptScore W2903674682C151730666 @default.
- W2903674682 hasConceptScore W2903674682C187320778 @default.
- W2903674682 hasConceptScore W2903674682C2779343474 @default.
- W2903674682 hasConceptScore W2903674682C35817400 @default.
- W2903674682 hasConceptScore W2903674682C46293882 @default.
- W2903674682 hasConceptScore W2903674682C5900021 @default.
- W2903674682 hasConceptScore W2903674682C6648577 @default.
- W2903674682 hasConceptScore W2903674682C8058405 @default.
- W2903674682 hasFunder F4320322725 @default.
- W2903674682 hasLocation W29036746821 @default.
- W2903674682 hasOpenAccess W2903674682 @default.