Matches in SemOpenAlex for { <https://semopenalex.org/work/W2903678049> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2903678049 endingPage "358" @default.
- W2903678049 startingPage "346" @default.
- W2903678049 abstract "Purpose Matching instances of the same entity, a task known as entity resolution, is a key step in the process of data integration. This paper aims to propose a deep learning network that learns different representations of Web entities for entity resolution. Design/methodology/approach To match Web entities, the proposed network learns the following representations of entities: embeddings, which are vector representations of the words in the entities in a low-dimensional space; convolutional vectors from a convolutional layer, which capture short-distance patterns in word sequences in the entities; and bag-of-word vectors, created by a bow layer that learns weights for words in the vocabulary based on the task at hand. Given a pair of entities, the similarity between their learned representations is used as a feature to a binary classifier that identifies a possible match. In addition to those features, the classifier also uses a modification of inverse document frequency for pairs, which identifies discriminative words in pairs of entities. Findings The proposed approach was evaluated in two commercial and two academic entity resolution benchmarking data sets. The results have shown that the proposed strategy outperforms previous approaches in the commercial data sets, which are more challenging, and have similar results to its competitors in the academic data sets. Originality/value No previous work has used a single deep learning framework to learn different representations of Web entities for entity resolution." @default.
- W2903678049 created "2018-12-22" @default.
- W2903678049 creator A5000683692 @default.
- W2903678049 date "2019-08-19" @default.
- W2903678049 modified "2023-09-26" @default.
- W2903678049 title "Learning representations of Web entities for entity resolution" @default.
- W2903678049 cites W1536860849 @default.
- W2903678049 cites W1981590391 @default.
- W2903678049 cites W2028742638 @default.
- W2903678049 cites W2044515729 @default.
- W2903678049 cites W2065259291 @default.
- W2903678049 cites W2087064593 @default.
- W2903678049 cites W2108223890 @default.
- W2903678049 cites W2123561513 @default.
- W2903678049 cites W2145007893 @default.
- W2903678049 cites W2145908616 @default.
- W2903678049 cites W2158420658 @default.
- W2903678049 cites W2164456230 @default.
- W2903678049 cites W2170971772 @default.
- W2903678049 cites W2171590421 @default.
- W2903678049 cites W2237063244 @default.
- W2903678049 cites W2296045323 @default.
- W2903678049 doi "https://doi.org/10.1108/ijwis-07-2018-0059" @default.
- W2903678049 hasPublicationYear "2019" @default.
- W2903678049 type Work @default.
- W2903678049 sameAs 2903678049 @default.
- W2903678049 citedByCount "5" @default.
- W2903678049 countsByYear W29036780492020 @default.
- W2903678049 countsByYear W29036780492021 @default.
- W2903678049 countsByYear W29036780492023 @default.
- W2903678049 crossrefType "journal-article" @default.
- W2903678049 hasAuthorship W2903678049A5000683692 @default.
- W2903678049 hasConcept C144133560 @default.
- W2903678049 hasConcept C154945302 @default.
- W2903678049 hasConcept C162853370 @default.
- W2903678049 hasConcept C204321447 @default.
- W2903678049 hasConcept C23123220 @default.
- W2903678049 hasConcept C41008148 @default.
- W2903678049 hasConcept C81363708 @default.
- W2903678049 hasConcept C83665646 @default.
- W2903678049 hasConcept C86251818 @default.
- W2903678049 hasConcept C95623464 @default.
- W2903678049 hasConceptScore W2903678049C144133560 @default.
- W2903678049 hasConceptScore W2903678049C154945302 @default.
- W2903678049 hasConceptScore W2903678049C162853370 @default.
- W2903678049 hasConceptScore W2903678049C204321447 @default.
- W2903678049 hasConceptScore W2903678049C23123220 @default.
- W2903678049 hasConceptScore W2903678049C41008148 @default.
- W2903678049 hasConceptScore W2903678049C81363708 @default.
- W2903678049 hasConceptScore W2903678049C83665646 @default.
- W2903678049 hasConceptScore W2903678049C86251818 @default.
- W2903678049 hasConceptScore W2903678049C95623464 @default.
- W2903678049 hasIssue "3" @default.
- W2903678049 hasLocation W29036780491 @default.
- W2903678049 hasOpenAccess W2903678049 @default.
- W2903678049 hasPrimaryLocation W29036780491 @default.
- W2903678049 hasRelatedWork W2160451891 @default.
- W2903678049 hasRelatedWork W2275058042 @default.
- W2903678049 hasRelatedWork W2995914718 @default.
- W2903678049 hasRelatedWork W3107474891 @default.
- W2903678049 hasRelatedWork W3127124240 @default.
- W2903678049 hasRelatedWork W3145957033 @default.
- W2903678049 hasRelatedWork W4225852842 @default.
- W2903678049 hasRelatedWork W4312754519 @default.
- W2903678049 hasRelatedWork W564581980 @default.
- W2903678049 hasRelatedWork W2018359039 @default.
- W2903678049 hasVolume "15" @default.
- W2903678049 isParatext "false" @default.
- W2903678049 isRetracted "false" @default.
- W2903678049 magId "2903678049" @default.
- W2903678049 workType "article" @default.