Matches in SemOpenAlex for { <https://semopenalex.org/work/W2903684270> ?p ?o ?g. }
- W2903684270 abstract "Non-local low-rank tensor approximation has been developed as a state-of-the-art method for hyperspectral image (HSI) denoising. Unfortunately, with more spectral bands for HSI, while the running time of these methods significantly increases, their denoising performance benefits little. In this paper, we claim that the HSI underlines a global spectral low-rank subspace, and the spectral subspaces of each full band patch groups should underlie this global low-rank subspace. This motivates us to propose a unified spatial-spectral paradigm for HSI denoising. As the new model is hard to optimize, we further propose an efficient algorithm for optimization, which is motivated by alternating minimization. This is done by first learning a low-dimensional projection and the related reduced image from the noisy HSI. Then, the non-local low-rank denoising and iterative regularization are developed to refine the reduced image and projection, respectively. Finally, experiments on synthetic and both real datasets demonstrate the superiority against the other state-of-the-arts HSI denoising methods." @default.
- W2903684270 created "2018-12-22" @default.
- W2903684270 creator A5003753200 @default.
- W2903684270 creator A5024704138 @default.
- W2903684270 creator A5034435383 @default.
- W2903684270 creator A5072484211 @default.
- W2903684270 creator A5083182987 @default.
- W2903684270 date "2018-12-11" @default.
- W2903684270 modified "2023-09-23" @default.
- W2903684270 title "Non-local Meets Global: An Integrated Paradigm for Hyperspectral Denoising" @default.
- W2903684270 cites W1944540851 @default.
- W2903684270 cites W1963408805 @default.
- W2903684270 cites W1970099214 @default.
- W2903684270 cites W1985242206 @default.
- W2903684270 cites W1988386267 @default.
- W2903684270 cites W1991003630 @default.
- W2903684270 cites W1994040806 @default.
- W2903684270 cites W2012946078 @default.
- W2903684270 cites W2014311222 @default.
- W2903684270 cites W2018990310 @default.
- W2903684270 cites W2022470997 @default.
- W2903684270 cites W2024165284 @default.
- W2903684270 cites W2030270830 @default.
- W2903684270 cites W2031007444 @default.
- W2903684270 cites W2043381570 @default.
- W2903684270 cites W2048695508 @default.
- W2903684270 cites W2070424424 @default.
- W2903684270 cites W2072026894 @default.
- W2903684270 cites W2082590963 @default.
- W2903684270 cites W2092116045 @default.
- W2903684270 cites W2095906131 @default.
- W2903684270 cites W2100109944 @default.
- W2903684270 cites W2116720609 @default.
- W2903684270 cites W2129891925 @default.
- W2903684270 cites W2133665775 @default.
- W2903684270 cites W2147353113 @default.
- W2903684270 cites W2155124307 @default.
- W2903684270 cites W2161073299 @default.
- W2903684270 cites W2163886442 @default.
- W2903684270 cites W2171520281 @default.
- W2903684270 cites W2198155329 @default.
- W2903684270 cites W2237974960 @default.
- W2903684270 cites W2336406062 @default.
- W2903684270 cites W2462946880 @default.
- W2903684270 cites W2466594406 @default.
- W2903684270 cites W2520219995 @default.
- W2903684270 cites W2613155248 @default.
- W2903684270 cites W2724686744 @default.
- W2903684270 cites W2743606449 @default.
- W2903684270 cites W2747865121 @default.
- W2903684270 cites W2748530166 @default.
- W2903684270 cites W2748967439 @default.
- W2903684270 cites W2752896014 @default.
- W2903684270 cites W2790528326 @default.
- W2903684270 cites W2790888198 @default.
- W2903684270 cites W2793237446 @default.
- W2903684270 cites W2793775875 @default.
- W2903684270 cites W2883143543 @default.
- W2903684270 cites W2899457449 @default.
- W2903684270 cites W2914736033 @default.
- W2903684270 cites W2964193752 @default.
- W2903684270 cites W3104436273 @default.
- W2903684270 doi "https://doi.org/10.48550/arxiv.1812.04243" @default.
- W2903684270 hasPublicationYear "2018" @default.
- W2903684270 type Work @default.
- W2903684270 sameAs 2903684270 @default.
- W2903684270 citedByCount "1" @default.
- W2903684270 countsByYear W29036842702020 @default.
- W2903684270 crossrefType "posted-content" @default.
- W2903684270 hasAuthorship W2903684270A5003753200 @default.
- W2903684270 hasAuthorship W2903684270A5024704138 @default.
- W2903684270 hasAuthorship W2903684270A5034435383 @default.
- W2903684270 hasAuthorship W2903684270A5072484211 @default.
- W2903684270 hasAuthorship W2903684270A5083182987 @default.
- W2903684270 hasBestOaLocation W29036842701 @default.
- W2903684270 hasConcept C11413529 @default.
- W2903684270 hasConcept C114614502 @default.
- W2903684270 hasConcept C12362212 @default.
- W2903684270 hasConcept C126255220 @default.
- W2903684270 hasConcept C147764199 @default.
- W2903684270 hasConcept C153180895 @default.
- W2903684270 hasConcept C154945302 @default.
- W2903684270 hasConcept C159078339 @default.
- W2903684270 hasConcept C163294075 @default.
- W2903684270 hasConcept C164226766 @default.
- W2903684270 hasConcept C2524010 @default.
- W2903684270 hasConcept C2776135515 @default.
- W2903684270 hasConcept C2776459999 @default.
- W2903684270 hasConcept C2983327147 @default.
- W2903684270 hasConcept C32834561 @default.
- W2903684270 hasConcept C33923547 @default.
- W2903684270 hasConcept C41008148 @default.
- W2903684270 hasConcept C57493831 @default.
- W2903684270 hasConcept C76155785 @default.
- W2903684270 hasConceptScore W2903684270C11413529 @default.
- W2903684270 hasConceptScore W2903684270C114614502 @default.
- W2903684270 hasConceptScore W2903684270C12362212 @default.
- W2903684270 hasConceptScore W2903684270C126255220 @default.
- W2903684270 hasConceptScore W2903684270C147764199 @default.
- W2903684270 hasConceptScore W2903684270C153180895 @default.