Matches in SemOpenAlex for { <https://semopenalex.org/work/W2903701701> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2903701701 endingPage "95" @default.
- W2903701701 startingPage "85" @default.
- W2903701701 abstract "The fine-grained classification or grading of breast cancer pathological images is of great value in clinical application. However, the manual feature extraction methods not only require professional knowledge, but also the cost of feature extraction is high, especially the high quality features. In this paper, we devise an improved deep convolution neural network model to achieve accurate fine-grained classification or grading of breast cancer pathological images. Meanwhile, we use online data augmentation and transfer learning strategy to avoid model overfitting. According to the issue that small inter-class variance and large intra-class variance exist in breast cancer pathological images, multi-class recognition task and verification task of image pair are combined in the representation learning process; in addition, the prior knowledge (different subclasses with relatively large distance and small distance between the same subclass) are embedded in the process of feature extraction. At the same time, the prior information that pathological images with different magnification belong to the same subclass will be embedded in the feature extraction process, which will lead to less sensitive with image magnification. Experimental results on two different pathological image datasets show that the performance of our method is better than that of state-of-the-arts, with good robustness and generalization ability." @default.
- W2903701701 created "2018-12-22" @default.
- W2903701701 creator A5017790987 @default.
- W2903701701 creator A5028311940 @default.
- W2903701701 creator A5041152156 @default.
- W2903701701 creator A5056692940 @default.
- W2903701701 creator A5059971229 @default.
- W2903701701 creator A5063059754 @default.
- W2903701701 creator A5068323815 @default.
- W2903701701 creator A5077799191 @default.
- W2903701701 creator A5083631821 @default.
- W2903701701 date "2019-02-19" @default.
- W2903701701 modified "2023-10-16" @default.
- W2903701701 title "Multi-task Deep Learning for Fine-Grained Classification/Grading in Breast Cancer Histopathological Images" @default.
- W2903701701 cites W2344480160 @default.
- W2903701701 cites W2504150216 @default.
- W2903701701 cites W2512419914 @default.
- W2903701701 cites W2554892747 @default.
- W2903701701 cites W2595156303 @default.
- W2903701701 cites W2624147939 @default.
- W2903701701 cites W2637598222 @default.
- W2903701701 cites W2716665989 @default.
- W2903701701 cites W2737813497 @default.
- W2903701701 cites W2737969950 @default.
- W2903701701 cites W2750873433 @default.
- W2903701701 cites W2753233659 @default.
- W2903701701 cites W2759912964 @default.
- W2903701701 doi "https://doi.org/10.1007/978-3-030-04946-1_10" @default.
- W2903701701 hasPublicationYear "2019" @default.
- W2903701701 type Work @default.
- W2903701701 sameAs 2903701701 @default.
- W2903701701 citedByCount "6" @default.
- W2903701701 countsByYear W29037017012020 @default.
- W2903701701 countsByYear W29037017012021 @default.
- W2903701701 countsByYear W29037017012023 @default.
- W2903701701 crossrefType "book-chapter" @default.
- W2903701701 hasAuthorship W2903701701A5017790987 @default.
- W2903701701 hasAuthorship W2903701701A5028311940 @default.
- W2903701701 hasAuthorship W2903701701A5041152156 @default.
- W2903701701 hasAuthorship W2903701701A5056692940 @default.
- W2903701701 hasAuthorship W2903701701A5059971229 @default.
- W2903701701 hasAuthorship W2903701701A5063059754 @default.
- W2903701701 hasAuthorship W2903701701A5068323815 @default.
- W2903701701 hasAuthorship W2903701701A5077799191 @default.
- W2903701701 hasAuthorship W2903701701A5083631821 @default.
- W2903701701 hasConcept C104317684 @default.
- W2903701701 hasConcept C108583219 @default.
- W2903701701 hasConcept C119857082 @default.
- W2903701701 hasConcept C127413603 @default.
- W2903701701 hasConcept C147176958 @default.
- W2903701701 hasConcept C150899416 @default.
- W2903701701 hasConcept C153180895 @default.
- W2903701701 hasConcept C154945302 @default.
- W2903701701 hasConcept C185592680 @default.
- W2903701701 hasConcept C22019652 @default.
- W2903701701 hasConcept C2777286243 @default.
- W2903701701 hasConcept C41008148 @default.
- W2903701701 hasConcept C50644808 @default.
- W2903701701 hasConcept C52622490 @default.
- W2903701701 hasConcept C55493867 @default.
- W2903701701 hasConcept C63479239 @default.
- W2903701701 hasConcept C81363708 @default.
- W2903701701 hasConceptScore W2903701701C104317684 @default.
- W2903701701 hasConceptScore W2903701701C108583219 @default.
- W2903701701 hasConceptScore W2903701701C119857082 @default.
- W2903701701 hasConceptScore W2903701701C127413603 @default.
- W2903701701 hasConceptScore W2903701701C147176958 @default.
- W2903701701 hasConceptScore W2903701701C150899416 @default.
- W2903701701 hasConceptScore W2903701701C153180895 @default.
- W2903701701 hasConceptScore W2903701701C154945302 @default.
- W2903701701 hasConceptScore W2903701701C185592680 @default.
- W2903701701 hasConceptScore W2903701701C22019652 @default.
- W2903701701 hasConceptScore W2903701701C2777286243 @default.
- W2903701701 hasConceptScore W2903701701C41008148 @default.
- W2903701701 hasConceptScore W2903701701C50644808 @default.
- W2903701701 hasConceptScore W2903701701C52622490 @default.
- W2903701701 hasConceptScore W2903701701C55493867 @default.
- W2903701701 hasConceptScore W2903701701C63479239 @default.
- W2903701701 hasConceptScore W2903701701C81363708 @default.
- W2903701701 hasLocation W29037017011 @default.
- W2903701701 hasOpenAccess W2903701701 @default.
- W2903701701 hasPrimaryLocation W29037017011 @default.
- W2903701701 hasRelatedWork W2767651786 @default.
- W2903701701 hasRelatedWork W2997709384 @default.
- W2903701701 hasRelatedWork W3012393889 @default.
- W2903701701 hasRelatedWork W3021430260 @default.
- W2903701701 hasRelatedWork W3099765033 @default.
- W2903701701 hasRelatedWork W3156786002 @default.
- W2903701701 hasRelatedWork W4220996320 @default.
- W2903701701 hasRelatedWork W4313289428 @default.
- W2903701701 hasRelatedWork W4366224123 @default.
- W2903701701 hasRelatedWork W4381832759 @default.
- W2903701701 isParatext "false" @default.
- W2903701701 isRetracted "false" @default.
- W2903701701 magId "2903701701" @default.
- W2903701701 workType "book-chapter" @default.