Matches in SemOpenAlex for { <https://semopenalex.org/work/W2903718075> ?p ?o ?g. }
- W2903718075 abstract "Cross-database micro-expression recognition (CDMER) is one of recently emerging and interesting problem in micro-expression analysis. CDMER is more challenging than the conventional micro-expression recognition (MER), because the training and testing samples in CDMER come from different micro-expression databases, resulting in the inconsistency of the feature distributions between the training and testing sets. In this paper, we contribute to this topic from three aspects. First, we establish a CDMER experimental evaluation protocol aiming to allow the researchers to conveniently work on this topic and provide a standard platform for evaluating their proposed methods. Second, we conduct benchmark experiments by using NINE state-of-the-art domain adaptation (DA) methods and SIX popular spatiotemporal descriptors for respectively investigating CDMER problem from two different perspectives. Third, we propose a novel DA method called region selective transfer regression (RSTR) to deal with the CDMER task. Our RSTR takes advantage of one important cue for recognizing micro-expressions, i.e., the different contributions of the facial local regions in MER. The overall superior performance of RSTR demonstrates that taking into consideration the important cues benefiting MER, e.g., the facial local region information, contributes to develop effective DA methods for dealing with CDMER problem." @default.
- W2903718075 created "2018-12-22" @default.
- W2903718075 creator A5025396815 @default.
- W2903718075 creator A5026880795 @default.
- W2903718075 creator A5027316177 @default.
- W2903718075 creator A5029771864 @default.
- W2903718075 creator A5037709424 @default.
- W2903718075 creator A5038686056 @default.
- W2903718075 creator A5082301986 @default.
- W2903718075 date "2018-12-18" @default.
- W2903718075 modified "2023-09-24" @default.
- W2903718075 title "Cross-Database Micro-Expression Recognition: A Benchmark" @default.
- W2903718075 cites W1522734439 @default.
- W2903718075 cites W1522926906 @default.
- W2903718075 cites W1582347098 @default.
- W2903718075 cites W1595126664 @default.
- W2903718075 cites W1607979445 @default.
- W2903718075 cites W1686810756 @default.
- W2903718075 cites W1736339626 @default.
- W2903718075 cites W1854318472 @default.
- W2903718075 cites W2006426145 @default.
- W2903718075 cites W2008635359 @default.
- W2903718075 cites W2016053056 @default.
- W2903718075 cites W2044106642 @default.
- W2903718075 cites W2051676197 @default.
- W2903718075 cites W2057266281 @default.
- W2903718075 cites W2059068649 @default.
- W2903718075 cites W2060488580 @default.
- W2903718075 cites W2064675550 @default.
- W2903718075 cites W2087977130 @default.
- W2903718075 cites W2089468765 @default.
- W2903718075 cites W2093033615 @default.
- W2903718075 cites W2096785365 @default.
- W2903718075 cites W2102689555 @default.
- W2903718075 cites W2103851188 @default.
- W2903718075 cites W2104068492 @default.
- W2903718075 cites W2108094420 @default.
- W2903718075 cites W2112483442 @default.
- W2903718075 cites W2113087918 @default.
- W2903718075 cites W2115403315 @default.
- W2903718075 cites W2125462608 @default.
- W2903718075 cites W2139916508 @default.
- W2903718075 cites W2140095548 @default.
- W2903718075 cites W2149466042 @default.
- W2903718075 cites W2153635508 @default.
- W2903718075 cites W2161969291 @default.
- W2903718075 cites W2163605009 @default.
- W2903718075 cites W2164943005 @default.
- W2903718075 cites W2165698076 @default.
- W2903718075 cites W2263218431 @default.
- W2903718075 cites W2269299223 @default.
- W2903718075 cites W2294193936 @default.
- W2903718075 cites W2308045930 @default.
- W2903718075 cites W2326887180 @default.
- W2903718075 cites W2342983306 @default.
- W2903718075 cites W2406432402 @default.
- W2903718075 cites W24089286 @default.
- W2903718075 cites W2409027603 @default.
- W2903718075 cites W2524215378 @default.
- W2903718075 cites W2526853616 @default.
- W2903718075 cites W2527254703 @default.
- W2903718075 cites W2578674746 @default.
- W2903718075 cites W2595794802 @default.
- W2903718075 cites W2726381870 @default.
- W2903718075 cites W2741039239 @default.
- W2903718075 cites W2793245122 @default.
- W2903718075 cites W2795270851 @default.
- W2903718075 cites W3103539074 @default.
- W2903718075 cites W3219084 @default.
- W2903718075 cites W65855405 @default.
- W2903718075 doi "https://doi.org/10.48550/arxiv.1812.07742" @default.
- W2903718075 hasPublicationYear "2018" @default.
- W2903718075 type Work @default.
- W2903718075 sameAs 2903718075 @default.
- W2903718075 citedByCount "0" @default.
- W2903718075 crossrefType "posted-content" @default.
- W2903718075 hasAuthorship W2903718075A5025396815 @default.
- W2903718075 hasAuthorship W2903718075A5026880795 @default.
- W2903718075 hasAuthorship W2903718075A5027316177 @default.
- W2903718075 hasAuthorship W2903718075A5029771864 @default.
- W2903718075 hasAuthorship W2903718075A5037709424 @default.
- W2903718075 hasAuthorship W2903718075A5038686056 @default.
- W2903718075 hasAuthorship W2903718075A5082301986 @default.
- W2903718075 hasBestOaLocation W29037180751 @default.
- W2903718075 hasConcept C119857082 @default.
- W2903718075 hasConcept C124101348 @default.
- W2903718075 hasConcept C127413603 @default.
- W2903718075 hasConcept C13280743 @default.
- W2903718075 hasConcept C138885662 @default.
- W2903718075 hasConcept C142724271 @default.
- W2903718075 hasConcept C153180895 @default.
- W2903718075 hasConcept C154945302 @default.
- W2903718075 hasConcept C185798385 @default.
- W2903718075 hasConcept C199360897 @default.
- W2903718075 hasConcept C201995342 @default.
- W2903718075 hasConcept C204787440 @default.
- W2903718075 hasConcept C205649164 @default.
- W2903718075 hasConcept C2776401178 @default.
- W2903718075 hasConcept C2780385302 @default.
- W2903718075 hasConcept C2780451532 @default.