Matches in SemOpenAlex for { <https://semopenalex.org/work/W2903737112> ?p ?o ?g. }
- W2903737112 endingPage "16" @default.
- W2903737112 startingPage "16" @default.
- W2903737112 abstract "In recent years, neural networks have become very popular in all kinds of prediction problems. In this paper, multiple feed-forward artificial neural networks (ANNs) with various configurations are used in the prediction of Parkinson’s disease (PD) of tested individuals, based on extracted features from 26 different voice samples per individual. Results are validated via the leave-one-subject-out (LOSO) scheme. Few feature selection procedures based on Pearson’s correlation coefficient, Kendall’s correlation coefficient, principal component analysis, and self-organizing maps, have been used for boosting the performance of algorithms and for data reduction. The best test accuracy result has been achieved with Kendall’s correlation coefficient-based feature selection, and the most relevant voice samples are recognized. Multiple ANNs have proven to be the best classification technique for diagnosis of PD without usage of the feature selection procedure (on raw data). Finally, a neural network is fine-tuned, and a test accuracy of 86.47% was achieved." @default.
- W2903737112 created "2018-12-22" @default.
- W2903737112 creator A5013613424 @default.
- W2903737112 creator A5016639941 @default.
- W2903737112 creator A5021409341 @default.
- W2903737112 creator A5026311918 @default.
- W2903737112 date "2018-12-20" @default.
- W2903737112 modified "2023-10-01" @default.
- W2903737112 title "Classifying Parkinson’s Disease Based on Acoustic Measures Using Artificial Neural Networks" @default.
- W2903737112 cites W1188511068 @default.
- W2903737112 cites W1418662746 @default.
- W2903737112 cites W1489794284 @default.
- W2903737112 cites W1493742622 @default.
- W2903737112 cites W1660772757 @default.
- W2903737112 cites W1977537754 @default.
- W2903737112 cites W1980345827 @default.
- W2903737112 cites W2003618762 @default.
- W2903737112 cites W2005025163 @default.
- W2903737112 cites W2006145851 @default.
- W2903737112 cites W2019043031 @default.
- W2903737112 cites W2037760741 @default.
- W2903737112 cites W2048412971 @default.
- W2903737112 cites W2075987325 @default.
- W2903737112 cites W2082237907 @default.
- W2903737112 cites W2091954768 @default.
- W2903737112 cites W2100534701 @default.
- W2903737112 cites W2142430469 @default.
- W2903737112 cites W2145954079 @default.
- W2903737112 cites W2155917379 @default.
- W2903737112 cites W2160166502 @default.
- W2903737112 cites W2163358930 @default.
- W2903737112 cites W2164650812 @default.
- W2903737112 cites W2169228003 @default.
- W2903737112 cites W2170249952 @default.
- W2903737112 cites W2263116838 @default.
- W2903737112 cites W2280894262 @default.
- W2903737112 cites W2281923782 @default.
- W2903737112 cites W2339549526 @default.
- W2903737112 cites W2412497331 @default.
- W2903737112 cites W2761197040 @default.
- W2903737112 cites W2778473818 @default.
- W2903737112 cites W4211151576 @default.
- W2903737112 doi "https://doi.org/10.3390/s19010016" @default.
- W2903737112 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6339026" @default.
- W2903737112 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30577548" @default.
- W2903737112 hasPublicationYear "2018" @default.
- W2903737112 type Work @default.
- W2903737112 sameAs 2903737112 @default.
- W2903737112 citedByCount "55" @default.
- W2903737112 countsByYear W29037371122019 @default.
- W2903737112 countsByYear W29037371122020 @default.
- W2903737112 countsByYear W29037371122021 @default.
- W2903737112 countsByYear W29037371122022 @default.
- W2903737112 countsByYear W29037371122023 @default.
- W2903737112 crossrefType "journal-article" @default.
- W2903737112 hasAuthorship W2903737112A5013613424 @default.
- W2903737112 hasAuthorship W2903737112A5016639941 @default.
- W2903737112 hasAuthorship W2903737112A5021409341 @default.
- W2903737112 hasAuthorship W2903737112A5026311918 @default.
- W2903737112 hasBestOaLocation W29037371121 @default.
- W2903737112 hasConcept C105795698 @default.
- W2903737112 hasConcept C117220453 @default.
- W2903737112 hasConcept C119857082 @default.
- W2903737112 hasConcept C124101348 @default.
- W2903737112 hasConcept C138885662 @default.
- W2903737112 hasConcept C148483581 @default.
- W2903737112 hasConcept C153180895 @default.
- W2903737112 hasConcept C154945302 @default.
- W2903737112 hasConcept C2524010 @default.
- W2903737112 hasConcept C27438332 @default.
- W2903737112 hasConcept C2776401178 @default.
- W2903737112 hasConcept C2780092901 @default.
- W2903737112 hasConcept C33923547 @default.
- W2903737112 hasConcept C41008148 @default.
- W2903737112 hasConcept C41895202 @default.
- W2903737112 hasConcept C46686674 @default.
- W2903737112 hasConcept C50644808 @default.
- W2903737112 hasConcept C55078378 @default.
- W2903737112 hasConcept C81917197 @default.
- W2903737112 hasConceptScore W2903737112C105795698 @default.
- W2903737112 hasConceptScore W2903737112C117220453 @default.
- W2903737112 hasConceptScore W2903737112C119857082 @default.
- W2903737112 hasConceptScore W2903737112C124101348 @default.
- W2903737112 hasConceptScore W2903737112C138885662 @default.
- W2903737112 hasConceptScore W2903737112C148483581 @default.
- W2903737112 hasConceptScore W2903737112C153180895 @default.
- W2903737112 hasConceptScore W2903737112C154945302 @default.
- W2903737112 hasConceptScore W2903737112C2524010 @default.
- W2903737112 hasConceptScore W2903737112C27438332 @default.
- W2903737112 hasConceptScore W2903737112C2776401178 @default.
- W2903737112 hasConceptScore W2903737112C2780092901 @default.
- W2903737112 hasConceptScore W2903737112C33923547 @default.
- W2903737112 hasConceptScore W2903737112C41008148 @default.
- W2903737112 hasConceptScore W2903737112C41895202 @default.
- W2903737112 hasConceptScore W2903737112C46686674 @default.
- W2903737112 hasConceptScore W2903737112C50644808 @default.
- W2903737112 hasConceptScore W2903737112C55078378 @default.
- W2903737112 hasConceptScore W2903737112C81917197 @default.