Matches in SemOpenAlex for { <https://semopenalex.org/work/W2903816401> ?p ?o ?g. }
- W2903816401 endingPage "641" @default.
- W2903816401 startingPage "628" @default.
- W2903816401 abstract "We describe an approach to multivariate analysis, termed structured kernel principal component regression (sKPCR), to identify associations in voxel-level connectomes using resting-state functional magnetic resonance imaging (rsfMRI) data. This powerful and computationally efficient multivariate method can identify voxel-phenotype associations based on the whole-brain connectivity pattern of voxels, and it can detect linear and non-linear signals in both volume-based and surface-based rsfMRI data. For each voxel, sKPCR first extracts low-dimensional signals from the spatially smoothed connectivities by structured kernel principal component analysis, and then tests the voxel-phenotype associations by an adaptive regression model. The method's power is derived from appropriately modelling the spatial structure of the data when performing dimension reduction, and then adaptively choosing an optimal dimension for association testing using the adaptive regression strategy. Simulations based on real connectome data have shown that sKPCR can accurately control the false-positive rate and that it is more powerful than many state-of-the-art approaches, such as the connectivity-wise generalized linear model (GLM) approach, multivariate distance matrix regression (MDMR), adaptive sum of powered score (aSPU) test, and least-square kernel machine (LSKM). Moreover, since sKPCR can reduce the computational cost of non-parametric permutation tests, its computation speed is much faster. To demonstrate the utility of sKPCR for real data analysis, we have also compared sKPCR with the above methods based on the identification of voxel-wise differences between schizophrenic patients and healthy controls in four independent rsfMRI datasets. The results showed that sKPCR had better between-sites reproducibility and a larger proportion of overlap with existing schizophrenia meta-analysis findings. Code for our approach can be downloaded from https://github.com/weikanggong/sKPCR." @default.
- W2903816401 created "2018-12-22" @default.
- W2903816401 creator A5008052826 @default.
- W2903816401 creator A5013147438 @default.
- W2903816401 creator A5029186968 @default.
- W2903816401 creator A5051339793 @default.
- W2903816401 creator A5070376724 @default.
- W2903816401 creator A5078614627 @default.
- W2903816401 creator A5078646757 @default.
- W2903816401 creator A5080019095 @default.
- W2903816401 creator A5081341243 @default.
- W2903816401 date "2019-03-01" @default.
- W2903816401 modified "2023-09-30" @default.
- W2903816401 title "A powerful and efficient multivariate approach for voxel-level connectome-wide association studies" @default.
- W2903816401 cites W1034866458 @default.
- W2903816401 cites W1087658448 @default.
- W2903816401 cites W1565549370 @default.
- W2903816401 cites W1828334443 @default.
- W2903816401 cites W1970562500 @default.
- W2903816401 cites W1983208069 @default.
- W2903816401 cites W1987599891 @default.
- W2903816401 cites W1991237518 @default.
- W2903816401 cites W2001789423 @default.
- W2903816401 cites W2019672444 @default.
- W2903816401 cites W2020044743 @default.
- W2903816401 cites W2030854293 @default.
- W2903816401 cites W2031401053 @default.
- W2903816401 cites W2046557060 @default.
- W2903816401 cites W2050597556 @default.
- W2903816401 cites W2053149514 @default.
- W2903816401 cites W2059798329 @default.
- W2903816401 cites W2073588997 @default.
- W2903816401 cites W2096672020 @default.
- W2903816401 cites W2098290597 @default.
- W2903816401 cites W2100909778 @default.
- W2903816401 cites W2102794349 @default.
- W2903816401 cites W2102834174 @default.
- W2903816401 cites W2104482304 @default.
- W2903816401 cites W2107665951 @default.
- W2903816401 cites W2111902267 @default.
- W2903816401 cites W2114115532 @default.
- W2903816401 cites W2116767467 @default.
- W2903816401 cites W2117621792 @default.
- W2903816401 cites W2124757386 @default.
- W2903816401 cites W2125027820 @default.
- W2903816401 cites W2126838454 @default.
- W2903816401 cites W2131481495 @default.
- W2903816401 cites W2136582936 @default.
- W2903816401 cites W2138790588 @default.
- W2903816401 cites W2144715991 @default.
- W2903816401 cites W2153595490 @default.
- W2903816401 cites W2157446241 @default.
- W2903816401 cites W2159706540 @default.
- W2903816401 cites W2169428430 @default.
- W2903816401 cites W2169463832 @default.
- W2903816401 cites W2173714055 @default.
- W2903816401 cites W2418956736 @default.
- W2903816401 cites W2526989977 @default.
- W2903816401 cites W2528626580 @default.
- W2903816401 cites W2555690102 @default.
- W2903816401 cites W2566574594 @default.
- W2903816401 cites W2755945667 @default.
- W2903816401 cites W2950126918 @default.
- W2903816401 cites W2952572991 @default.
- W2903816401 cites W2963851063 @default.
- W2903816401 doi "https://doi.org/10.1016/j.neuroimage.2018.12.032" @default.
- W2903816401 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30576851" @default.
- W2903816401 hasPublicationYear "2019" @default.
- W2903816401 type Work @default.
- W2903816401 sameAs 2903816401 @default.
- W2903816401 citedByCount "7" @default.
- W2903816401 countsByYear W29038164012019 @default.
- W2903816401 countsByYear W29038164012020 @default.
- W2903816401 countsByYear W29038164012021 @default.
- W2903816401 countsByYear W29038164012023 @default.
- W2903816401 crossrefType "journal-article" @default.
- W2903816401 hasAuthorship W2903816401A5008052826 @default.
- W2903816401 hasAuthorship W2903816401A5013147438 @default.
- W2903816401 hasAuthorship W2903816401A5029186968 @default.
- W2903816401 hasAuthorship W2903816401A5051339793 @default.
- W2903816401 hasAuthorship W2903816401A5070376724 @default.
- W2903816401 hasAuthorship W2903816401A5078614627 @default.
- W2903816401 hasAuthorship W2903816401A5078646757 @default.
- W2903816401 hasAuthorship W2903816401A5080019095 @default.
- W2903816401 hasAuthorship W2903816401A5081341243 @default.
- W2903816401 hasBestOaLocation W29038164012 @default.
- W2903816401 hasConcept C114614502 @default.
- W2903816401 hasConcept C119857082 @default.
- W2903816401 hasConcept C122280245 @default.
- W2903816401 hasConcept C12267149 @default.
- W2903816401 hasConcept C153180895 @default.
- W2903816401 hasConcept C154945302 @default.
- W2903816401 hasConcept C161584116 @default.
- W2903816401 hasConcept C169760540 @default.
- W2903816401 hasConcept C182335926 @default.
- W2903816401 hasConcept C199163554 @default.
- W2903816401 hasConcept C27438332 @default.
- W2903816401 hasConcept C3018011982 @default.